The Supporting Materials

A Combinatory Ferroelectric Compound Bridging Simple ABO₃ and A-site-Ordered Quadruple Perovskite

Jianfa Zhao^{1,2}, Jiacheng Gao¹, Wenmin Li¹, Yuting Qian¹, Xudong Shen^{1,2}, Xiao Wang³, Xi Shen¹, Zhiwei Hu³, Cheng Dong⁴, Qingzhen Huang⁵, Lipeng Cao¹, Zhi Li⁶, Jun Zhang¹, Chongwen Ren¹, Lei Duan¹, Qingqing Liu¹, Richeng Yu¹, Yang Ren⁷, Shih-Chang Weng⁸, Hong-Ji Lin⁸, Chien-Te Chen⁸, Liu-Hao Tjeng³, Youwen Long^{1,2}, Zheng Deng¹, Jinlong Zhu⁹, Xiancheng Wang¹, Hongming Weng^{1*}, Runze Yu^{1*}, Martha Greenblatt¹⁰, and Changqing Jin^{1,2*}

Supplementary Methods

The magnetic susceptibility was measured by using a vibrating sample magnetometer (VSM) of a Quantum Design MPMS system. The electrical transport properties are studied using a Quantum Design Physical Properties Measurement System (PPMS) by standard four-probe method. The thermal stability of the sample was measured by thermogravimetry analysis from room temperature to 1473 K at a heating rate of 10 K min⁻¹, using a LABSYS EVO TGA system. Diffuse-reflectance spectra were measured at room temperature using a UV-Vis-NIR spectrophotometer. The morphology and particle size were investigated by Scanning Electron Microscope (SEM) using a field emission scanning microscope (model Hitachi S-4800)

First principles calculation was performed by using the Vienna ab initio simulation package $(VASP)^{1, 2}$, which implements the density functional theory with generalized gradient approximation $(GGA)^3$ of Perdew-Burke-Ernzerhof (PBE) type to exchange-correlation functional. Electronic band structure was calculate with plane wave cutoff of 700 eV and a $7 \times 7 \times 7$ Monkhorst-Pack k-point mesh. The phonon band structure were calculated by using the density functional perturbation theory (DFPF) performed with the VASP and PHONOPY package⁴. A $2 \times 2 \times 2$ supercell of 160 atoms was used here. We also checked the phonon band result using the ALAMODE package⁵, which gave a same result. All these calculations were done after a careful optimization with the given symmetry until the residual Hellmann-Feynman forces became smaller than 10^{-4} eV Å⁻¹.

	SXRD
a(Å)	7.7234(9)
Ζ	2
Formula weight	1192.56
Cacl. Density (g/cm ³)	8.5958(9)
$V(Å^3)$	460.72(5)
O_y	0.7069(2)
Oz	0.2181(0)
$U_{\rm iso}({\rm Pb})({\rm ~\AA}^2)$	0.011(4)
$U_{\rm iso}({\rm Hg})({\rm ~\AA}^2)$	0.009(7)
$U_{\rm iso}({\rm Ti})({\rm \AA}^2)$	0.004(0)
$U_{\rm iso}({\rm O})(~{\rm \AA}^2)$	0.003(2)
Pb-O(×12)(Å)	2.821(6)
Hg-O(×4)(Å)	2.322(1)
Hg-O(×4)(Å)	2.700(8)
Ti-O(×6)(Å)	1.974(7)
∠Ti-O-Ti (°)	155.80(1)
BVS(Pb)	1.76
BVS(Hg)	2.11
BVS(Ti)	3.90
$R_{wp}(\%)$	8.47
$R_p(\%)$	6.79

Table S1 | Refined structure parameters of PHTO based on SXRD data collected at 300 K.

^{*a*} The BVS values (V_i) were calculated using the formula $V_i = \sum_j S_{ij}$, and $S_{ij} = \exp[(r_0 - r_{ij})/0.37)]$. In PHTO, $r_0 = 2.112$ for Pb, 1.972 for Hg and 1.815 for Ti. For the A-site Pb, 12-coordinated oxygen atoms were used. For the A'-site Hg, 8-coordinated oxygen atoms were used. For the B-site Ti, 6-coordinated oxygen atoms were used. ^{*b*}Space group: *I*m-3; Atomic sites: Pb 2*a* (0, 0, 0), Hg 6*b* (0, 0.5, 0.5), Ti 8*c* (0.25, 0.25, 0.25), O 24*g* (0, *y*, *z*).

Crystallographic data for PbHg ₃ Ti ₄ O ₁₂ based on SXRD at 90 K							
Atom	Wyck	Х	у	Z	$U_{\rm iso}({\rm \AA}^2)$		
Pb	2a	0.5	0.5	0.5	0.008(9)		
Hg1	2b	0.5	0	0.5	0.007(1)		
Hg2	2a	0.5	0.5	0	0.005(1)		
Hg3	2b	0.5	0	0	0.005(4)		
Ti	8e	0.2319(7)	0.2547(5)	0.2295(1)	0.016(2)		
01	4c	0.2125(1)	0	0.2707(9)	0.002(4)		
O2	8e	0.2872(7)	0.1966(5)	-0.0179(9)	0.010(4)		
O3	4d	0	0.3061(7)	0.2208(8)	0.005(1)		
O4	4c	-0.1982(8)	0	-0.2835(1)	0.005(0)		
05	4d	0	-0.2942(1)	-0.2414(7)	0.001(7)		
Bond length (Å) Bond angle(°)				(°)			
Pb-O1: 2.	657(1)	Ti-O1: 1.993(9)	Hg1-O1: 2.842(1)	∠Ti-O1-Ti :	159.67(0)		
Pb-O2: 2.	696(1)	Ti-O2: 2.004(2)	Hg1-O3: 2.263(5)	∠Ti-O2-Ti :	150.81(7)		
Pb-O3: 2.	908(2)	Ti-O3: 1.841(7)	Hg1-O5: 2.443(7)	∠Ti-O3-Ti :	154.80(5)		
Pb-O4: 2.	669(8)	Ti-O4: 1.967(7)	Hg2-O1: 2.411(4)	∠Ti-O4-Ti :	147.56(0)		
Pb-O5: 2.	931(9)	Ti-O5: 2.122(5)	Hg2-O4: 2.267(1)	∠Ti-O5-Ti :	156.15(6)		
			Hg3-O2: 2.243(0)				
			Hg3-O3: 2.617(4)				
			Hg3-O5: 2.545(1)				

 Table S2 | Refined structure parameters of PHTO based on SXRD data collected at 90 K.

Space group: *Imm*2 (No. 44) a = 7.7483(9) Å, b = 7.7042(4) Å, c = 7.7014(2) Å; $\alpha = \beta = \gamma = 90^{\circ}$;

 $V = 459.740 \text{ Å}^3$; Z = 2; $R_p = 5.34\%$, $R_{wp} = 6.95\%$.

Fig. S1 Rietveld refinements of SXRD patterns for at 300 K PHTO. Observed (crosses), calculated (red), difference (blue) and Bragg reflections (green) are shown in the figure, respectively. The ticks indicate the allowed Bragg reflections with space group *Im*-3.

Fig. S2 a, The density of states projected on the *d* orbitals of a single Hg atom. Systems with smaller Hg-O scaling factor have higher d^{10} energy level. The energy is aligned with respect to the Ti 3*p* states so that the energy positions can be directly compared. **b**, The total energy of PHTO system as a function of the Hg-O bond length. The shorter bond of Hg-O is scaling factor times the original bond length.

Fig. S3 Temperature dependent magnetic susceptibility χ for PHTO with external magnetic field of 0.1 T.

Fig. S4 a, UV-Vis-NIR diffuse reflectance spectrum of PHTO measured at room temperature. **b**, First-principle calculation of PHTO band structures.

Fig. S5 Thermogravimetry analysis of PHTO. The TGA measurement results show that the sample decomposed at about 973 K, losing about 40% of its mass. The residual products were TiO_2 and PbO, so the decomposition reaction was $PbHg_3Ti_4O_{12} \rightarrow PbO+3HgO+4TiO_2$. The observed weight loss agrees well with the HgO, which evaporates into the air at high temperature.

Fig. S6 Temperature dependence of SXRD patterns of PHTO obtained from 300 K to 100 K.

Fig. S7 a, SXRD patterns of PHTO obtained at 300 K and 90 K. **b**, Some characteristic diffraction peaks collected at 300 K and 90 K.

Fig. S8 Schematic illustration for the changing of HgO₈ hexahedron before and after phase transition

Fig. S9 The phonon band calculated by using the DFPT method.

Fig. S10 SEM micrographs of **a**, the fracture surface and **b**, grain boundaries for polycrystalline sample of PHTO.

REFERENCES

- 1 Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169-11186 (1996).
- 2 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **59**, 1758-1775 (1999).
- 3 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865-3868 (1996).
- 4 Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures. *Phys. Rev. B* **78**, 134106 (2008).
- 5 Tadano, T., Gohda, Y. & Tsuneyuki, S. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys.: Condens. Matter 26, 225402 (2014).