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Supplementary Methods

The magnetic susceptibility was measured by using a vibrating sample
magnetometer (VSM) of a Quantum Design MPMS system. The electrical transport
properties are studied using a Quantum Design Physical Properties Measurement
System (PPMS) by standard four-probe method. The thermal stability of the sample
was measured by thermogravimetry analysis from room temperature to 1473 K at a
heating rate of 10 K min™', using a LABSYS EVO TGA system. Diffuse-reflectance
spectra were measured at room temperature using a UV-Vis-NIR spectrophotometer.
The morphology and particle size were investigated by Scanning Electron Microscope
(SEM) using a field emission scanning microscope (model Hitachi S-4800)

First principles calculation was performed by using the Vienna ab initio
simulation package (VASP)"?, which implements the density functional theory with
generalized gradient approximation (GGA)® of Perdew-Burke-Ernzerhof (PBE) type
to exchange-correlation functional. Electronic band structure was calculate with plane
wave cutoff of 700 eV and a 7X7X7 Monkhorst-Pack k-point mesh. The phonon
band structure were calculated by using the density functional perturbation theory

(DFPF) performed with the VASP and PHONOPY package’. A 2X2X2 supercell of

160 atoms was used here. We also checked the phonon band result using the
ALAMODE package’, which gave a same result. All these calculations were done
after a careful optimization with the given symmetry until the residual

Hellmann-Feynman forces became smaller than 10 eV A™.
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Table S1 | Refined structure parameters of PHTO based on SXRD data collected at 300 K.

SXRD
a(A) 7.7234(9)
Z 2
Formula weight 1192.56
Cacl. Density (g/cm’)  8.5958(9)
V(A?) 460.72(5)
Oy 0.7069(2)
0, 0.2181(0)
Uiso(Pb)( A%) 0.011(4)
Uso(Hg)( A% 0.009(7)
Uso(TD)( A?) 0.004(0)
Uio(O)( A%) 0.003(2)
Pb-O(x12)( A) 2.821(6)
Hg-O(x4)( A) 2.322(1)
Hg-O(x4)( A) 2.700(8)
Ti-O(x6)( A) 1.974(7)
ZTi-O-Ti (°) 155.80(1)
BVS(Pb) 1.76
BVS(Hg) 2.11
BVS(Ti) 3.90

Ry (%) 8.47
R,(%) 6.79

“ The BVS values (V;) were calculated using the formula V; = %S, and S;; =
PHTO, ry =2.112 for Pb, 1.972 for Hg and 1.815 for Ti. For the A-site Pb, 12-coordinated oxygen

exp[(ro - ¥;7)/0.37)]. In

atoms were used. For the A’-site Hg, 8-coordinated oxygen atoms were used. For the B-site Ti,

6-coordinated oxygen atoms were used. “Space group: /m-3; Atomic sites: Pb 24 (0, 0, 0), Hg 6b

(0, 0.5, 0.5), Ti 8¢ (0.25, 0.25, 0.25), O 24g (0, y, z).
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Table S2 | Refined structure parameters of PHTO based on SXRD data collected at 90 K.

Crystallographic data for PbHg;Ti40;, based on SXRD at 90 K

Atom Wyck X y z Uso (AY)
Pb 2a 0.5 0.5 0.5 0.008(9)
Hgl 2b 0.5 0 0.5 0.007(1)
Hg2 2a 0.5 0.5 0 0.005(1)
Hg3 2b 0.5 0 0 0.005(4)
Ti 8¢ 02319(7)  0.2547(5) 0.2295(1) 0.016(2)
o1 4c 02125(1) 0 0.2707(9) 0.002(4)
02 8¢ 0.2872(7)  0.1966(5) 20.0179(9) 0.010(4)
03 4d 0 0.3061(7) 0.2208(8) 0.005(1)
04 4c 20.1982(8) 0 20.2835(1) 0.005(0)
05 4d 0 -0.2942(1) -0.2414(7) 0.001(7)
Bond length (A) Bond angle(®)

Pb-01:2.657(1) Ti-O1: 1.993(9) Hgl1-01: 2.842(1) £Ti-O1-Ti : 159.67(0)
Pb-02: 2.696(1) Ti-02:2.0042)  Hgl-03:2263(5)  /Ti-02-Ti: 150.81(7)
Pb-03: 2.908(2) Ti-03:1.841(7)  Hgl-05:2.443(7)  /Ti-O3-Ti: 154.80(5)
Pb-0O4: 2.669(8) Ti-04: 1.967(7) Hg2-01:2.411(4) £Ti-0O4-Ti : 147.56(0)
Pb-05:2.931(9) Ti-05: 2.122(5) Hg2-04: 2.267(1) £Ti-05-Ti : 156.15(6)

Hg3-02: 2.243(0)
Hg3-03: 2.617(4)
Hg3-05: 2.545(1)

Space group: Imm2 (No. 44) a=7.7483(9) A, b="7.7042(4) A, ¢ =7.7014(2) A; a = =y = 90°;
V'=459.740 A’ Z = 2; R, = 5.34%, Ry = 6.95%.
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Fig. S1 Rietveld refinements of SXRD patterns for at 300 K PHTO. Observed
(crosses), calculated (red), difference (blue) and Bragg reflections (green) are shown
in the figure, respectively. The ticks indicate the allowed Bragg reflections with space

group Im-3.
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Fig. S2 a, The density of states projected on the d orbitals of a single Hg atom.
Systems with smaller Hg-O scaling factor have higher d'° energy level. The energy is
aligned with respect to the Ti 3p states so that the energy positions can be directly
compared. b, The total energy of PHTO system as a function of the Hg-O bond length.
The shorter bond of Hg-O is scaling factor times the original bond length.
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Fig. S3 Temperature dependent magnetic susceptibility x for PHTO with external
magnetic field of 0.1 T.
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Fig. S4 a, UV-Vis-NIR diffuse reflectance spectrum of PHTO measured at room

temperature. b, First-principle calculation of PHTO band structures.
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Fig. S5 Thermogravimetry analysis of PHTO. The TGA measurement results show
that the sample decomposed at about 973 K, losing about 40% of its mass. The
residual products were TiO, and PbO, so the decomposition reaction was

PbHg3Ti401,—~PbO+3HgO+4TiO,. The observed weight loss agrees well with the

HgO, which evaporates into the air at high temperature.
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Fig. S6 Temperature dependence of SXRD patterns of PHTO obtained from 300 K to
100 K.
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Fig. S7 a, SXRD patterns of PHTO obtained at 300 K and 90 K. b, Some
characteristic diffraction peaks collected at 300 K and 90 K.
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Fig. S8 Schematic illustration for the changing of HgOg hexahedron before and after

phase transition
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Fig. S9 The phonon band calculated by using the DFPT method.
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Fig. S10 SEM micrographs of a, the fracture surface and b, grain boundaries for
polycrystalline sample of PHTO.

REFERENCES

1 Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996).

2 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave
method. Phys. Rev. B 59, 1758-1775 (1999).

3 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.
Phys. Rev. Lett. 77, 3865-3868 (1996).

4 Togo, A., Oba, F. & Tanaka, 1. First-principles calculations of the ferroelastic transition
between rutile-type and CaCly-type SiO, at high pressures. Phys. Rev. B 78, 134106 (2008).

5 Tadano, T., Gohda, Y. & Tsuneyuki, S. Anharmonic force constants extracted from
first-principles molecular dynamics: applications to heat transfer simulations. J. Phys.. Condens.

Matter 26, 225402 (2014).

10/10



