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ABSTRACT: An AA’;B,B’,0,,-type quadruple perovskite oxide of
CaCu;Cr,Re, 0, was synthesized at 18 GPa and 1373 K. Both an
A- and B-site ordered quadruple perovskite crystal structure was
observed, with the space group Pn-3. The valence states are verified
to be CaCu,;**Cr,*"Re,** O}, by bond valence sum calculations and
synchrotron X-ray absorption spectroscopy. The spin interaction
among Cu*, Cr’*, and Re’* generates a ferrimagnetic transition
with the Curie temperature (T) at about 360 K. Moreover, electric
transport properties and specific heat data suggest the presence of a
half-metallic feature for this compound. The present study provides
a promising quadruple perovskite oxide with above-room-temper-
ature ferrimagnetism and possible half-metallic properties, which shows potential in the usage of spintronic devices.
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1. INTRODUCTION materials of both A- and B-site ordered QPs with the chemical
formula AA’;B,B’,0,,. Owing to the multiple interactions of
magnetic ions at various sites (A, B, and B’ sites), such
materials could show more intriguing physical properties, such
as charge disproportionation, multiple magnetic transition,
high-temperature magnetic ordering, high-performance half-
metallicity, and so on.'”™**

To date, although many simple ABO; perovskites and B-site
ordered DPs have been reported, the study of AA’;B,B’,0,,
perovskites is relatively limited because a unique high-pressure
synthesis method is usually required to stabilize the heavily
tilted octahedra in these QPs. Recently, Cr-based DPs have
received increasing attention. Specifically, Cr-based ordered
DPs A,CtMO; (A = Sr, Ca; M = Mo, W, Re, Os) with
ferromagnetic (FM) or ferrimagnetic (FiM) properties, in

Perovskite oxides with the chemical formula ABO; have
attracted much attention due to their wide varieties of physical
and chemical properties, such as ferromagnetism, ferroelec-
tricity, multiferroic, superconductivity, negative thermal
expansion, etc.'° In ABO; perovskites, the A-site is typically
occupied by large-size nonmagnetic alkali-metal, alkaline-earth,
or lanthanide cations, while the B-site can be filled with various
magnetic transition metals. Half of the B-site can be
substituted by another transition metal B’. When the difference
between the two kinds of transition-metal ions, including the
ionic radii and the valence state, is large enough, the B-site
ordered double perovskites (DPs) A,BB’O4 with a typical
rocksalt type tend to form.” Sr,FeMoQg is a representative DP

material with intriguing half-metallic property.'® On the other . 3 a3 o S aql o S+ (e ql
hand, three-quarter A-site cations can be substituted by small- which Cr* (3¢ § = 3/2) and Mo™ (4d, § = 1/2) [W™ (sd,

size Jahn—Teller active ions such as Mn>* (t,.%,') and Cu** S = 1/2), Re™ (s, § = 1), Os™ (5%, § = 3/2)] coup;i
(t 6y 3, which tends to form a square cooréignagte 4 unit. |12 antiferromagnetically, have been studied since the 1960s.
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octahedra can be formed, and intriguing physical properties @ higher T of 635 K. Moreover, Sr,CrOsO; has the highest
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T of 725 K among DP oxide materials.”® However, Cr-based
A- and B-site ordered QPs with different magnetic ions at B/B’
sites have not been reported yet. In this paper, a new Cr-based
A- and B-site ordered QP CaCu,Cr,Re,0,, (CCCRO)
prepared using a high-pressure method was reported. Above-
room-temperature ferrimagnetism accompanied by a possible
half-metallic property was observed. The detailed crystal
structure, valence state, and magnetic and transport properties
were studied.

2. EXPERIMENTAL SECTION

The polycrystalline CaCu;Cr,Re,0,, was synthesized from stoichio-
metric mixtures of high-purity (>99.9%) CaO, CuO, Cr,0;, ReO,,
and Re, 0, powders. These reactants were thoroughly mixed with the
mole ratio of 3:9:3:4:1, ground in an agate mortar, and then pressed
into a gold capsule of 2.0 mm diameter and length within an argon-
filled glovebox. The capsule was treated at 18 GPa and 1373 K for 45
min by using a Walker-type double-stage high-pressure apparatus.
After heat treatment, the high pressure was slowly released to the
ambient condition. Powder X-ray diffraction (XRD) was measured
using a Huber diffractometer (Cu Ka, radiation, 40 kV, 20 mA) in the
20 range from 10 to 100° at room temperature (RT). The data were
refined by the Rietveld method using GSAS software.””** The X-ray
absorption spectroscopy (XAS) measurement at the Cu-L,; and Cr-
L, ; edges was carried out at RT using the total electron yield mode at
the TLS11A beamline of the National Synchrotron Radiation
Research Center (NSRRC) synchrotron facility in Taiwan. The
XAS measurement at the Re-L; edge was performed at the TLSO8A
beamline of NSRRC with the transmission mode at RT. Magnetic
susceptibility (y) and magnetization (M) measurements were carried
out using a superconducting quantum interference device magneto-
meter (Quantum Design, MPMS-VSM). Electrical transport with a
standard four-probe method and specific heat properties were
measured on a physical property measurement system (Quantum
Design, PPMS-9 T).

3. RESULTS AND DISCUSSION

The XRD pattern and refinement results of the CCCRO
compound are shown in Figure 1(a). The crystal indices of
diffraction peaks with an odd-numbered total value h + k + [
[(111), (311), and (333)] in the XRD pattern indicate the
rocksalt-type ordered arrangement of Cr/Re cations at the B/
B’ sites. Rietveld analysis suggested that CCCRO has both the
A- and B-site ordered QP structure, the same as
CaCu;Fe,Re,0,, with the space group Pn-3,>" as shown in
Figure 1(b). According to the refinements, the occupancy
factors of both the A-site Ca and A’-site Cu atoms were close
to 1.0, indicating that there was nearly neither Ca—Cu antisite
occupancy nor other elements occupying these two sites due to
their unique coordination environment. Therefore, these two
occupancy factors were set to be unity. Note that an
approximately 10.8% Cr—Re antisite occupancy was observed
based on the refinement results. Combined with the expected
valence states of the cations determined by XAS (see below),
the oxygen vacancies can be ignored, and the occupancy factor
of oxygen was fixed to be unity. The detailed structural
parameters are listed in Table 1. As can be seen, four of the 12
Cu—O distances are short, 1.970 A, indicating the square-
planar coordination of oxygen around the A’ site. According to
the refined bond lengths, the bond valence sum (BVS)
calculations indicate the valence states of Cu, Cr, and Re to be
+2.15, + 2.79, and +5.04, respectively, suggesting a
CaCuy**Cr,**Re,”*0;, charge combination, in agreement
with the XAS measurements shown below.
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Figure 1. (a) XRD pattern and Rietveld refinement results of
CCCRO at RT. The observed (black circles), calculated (red line),
and difference (green line) are shown. The top ticks indicate the
allowed Bragg reflections with the space group Pn-3. The middle and
bottom ticks present a small amount of ReO, and CrOOH impurity
phases (~5.7 wt % in total), respectively. (b) Schematic crystal
structure with the space group Pn-3 for CCCRO.

To further confirm the valence states, we performed XAS
measurements at the Cu-L,;, Cr-L,;, and Re-L; edges. Figure
2(a) shows the Cu-L,; XAS of CCCRO together with that of
CaCu;Ti,O,, as a Cu?* reference in a QP structure.”” The
similar shape of the peak and energy position indicates the
formation of a Cu*" valence state in CCCRO with a square-
planar local environment. Figure 2(b) shows the Cr-L,; XAS
with BiMn;Cr,O;, as a Cr’" reference with a similar CrOq
octahedral coordination environment.'® The multiple spectral
features and energy positions of CCCRO are consistent with
those of the Cr®" reference, indicating the Cr® valence state at
the octahedral B-site. The Re-L; XAS of CCCRO, Sr,MgReOq
as a Re®" reference,” and Sr,FeReQg as a Re’* reference”’ are
shown in Figure 2(c). The Re-L; of CCCRO shifts more than
1 eV to a lower energy compared with that of the Re®*
reference but locates at a similar energy with that of the Re®*
reference, which indicates the formation of the Re>* valence
state. Therefore, the XAS measurements of CCCRO confirm
the charge combination to be CaCu;**Cr,*>'Re,**Oy,.

Figure 3(a) shows the temperature dependence of the dc
magnetic susceptibility of CCCRO from 2 to 400 K in the field
cooling mode under an external field of 0.1 T. With decreasing
temperature, the susceptibility experiences an increase at the
onset of about 360 K, which is more clearly visible in the curve
of the temperature dependence of the first derivative of
magnetic susceptibility [see the inset of Figure 3(a)],
suggesting an FM-like transition as demonstrated by the
field-dependent magnetization shown in Figure 3(b), where
noticeable magnetic hysteresis behavior can be observed below
Tc. The FM-like magnetic transition cannot be attributed to
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Table 1. Structure Parameters and BVS Results of CCCRO 25 T T T T T T
Refined from the XRD Pattern at RT“ (a) , Cu-t
-2 - p
parameter CCCRO é 0
a(A) 7.4152(2) £15 CCCRO .
0, 0.5583(6) g
o, 0.7559(3) 210} .
O, 0.0662(6) ;
G (2a for Ca) 1.0 =05} 2% e E
G (6d for Cu) 1.0 CaCu 3Tl4OD—A
G (4b for Cr1) 0.892(1) 00 935 940 945 950 955
G (4b for Rel) 0.108(1) 25 . . : .
G (4c for Re2) 0.892(1) (b) Cr-L,
G (4c for Cr2) 0.108(1) =2.0
G (24h for O) 1.0 E
U, (Ca) (100 x A?) 0.8(3) s15
U,, (Cu) (100 x A?) 1.7(1) S
Uso (Cr1) (100 x A?) 0.4(3) £1.0 BiMn,Cr'",0,,
U.., (Re2) (100 x A%) 12(4) g
Uy, (0) (100 x A?) 0.7(1) =05
Cu—0 (x4) (A) 1.970(3)
Cr1—-0 (x6) (A) 2.007(2) 0.0 5; s 5;;0 5;;5 5(')0
Re2—0 (x6) (A) 1.924(2) 3.0 T T T :
£Cr1—0—Re2 (°) 141.1(1)
£Cu—0—Crl (°) 107.7(1) %
2£Cu—0—Re2 (°) 111.1(1) E
BVS (Cu) 2.15 £
BVS (Cr) 2.79 =
BVS (Re) 5.04 Z
R,, (%) 4.92 g
R, (%) 3.36 - Sr,FeRe*" Oy -

“Crystal data: space group Pn-3 (No. 201); atomic sites: Ca 2a (0.25,
0.25,0.25); Cu 6d (0.25, 0.75, 0.75); Cr 4b (0, 0, 0); Re 4c (0.5, 0.5,
0.5); O 24h (%, y, z). The BVS values (V;) were calculated using the
formula V; = 3S; and S; = exp[(r, — r;)/0.37]. The values of r, were
1.679 for Cu, 1.724 for Cr, and 1.86 for Re. For the B-site Cr and B’-
site Re, six coordinated oxygen atoms were used. For the A’-site Cu,
12 coordinated oxygen atoms were used. G, site occupancy.
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Figure 2. XAS of (a) Cu-L,; edges, (b) Cr-L,; edges, and (c) Re-L,
edges for CCCRO. The XASs of some related references are also
shown for comparison.

detectable impurities ReO, and CrOOH [illustrated in Figure
1(a)] due to their paramagnetic property and antiferromag-
netic transition with a lower Néel temperature, respec-
tively.”>*> The T. of CCCRO is lower than that of
CaCu;Fe,Re,0,,.”" Considering the nearly identical structural
parameters of these compounds, the reduction in T primarily
results from the decrease of the number of unpaired d-
electrons in a Cr’* ion compared to an Fe® ion, which
weakens the superexchange spin interactions of B—O—Re.
However, the ma§netic interactions are enhanced compared to
CaCu;Cr,Sb,0,,”* due to the existence of magnetic ions at the
B’ site. The shape of the y(T) curve in Figure 3(a) illustrates a
broad FM or FiM transition, indicating a certain degree of
anisotropy in this sample or the presence of a competing
magnetic interaction. The latter may originate from the short-
range correlation by the B-site antisite defect. As shown in
Figure 4(b), there is no clear anomaly in the specific heat
around T, which also suggests the occurrence of short-range
correlation and/or competing magnetic interaction. The
magnetization at 2 K shows remarkable magnetic hysteresis
with a coercive field of about 1 T [Figure 3(b)], which is
reminiscent of hard magnetic materials; however, the B-site
disordered defect can also result in a certain degree of
hysteresis. The saturated moment is about 1.6 yy per formula

3501

unit (fu.) at 2 K, which is relatively small compared to other
A- and B-site ordered FiM QPs.”'~**

In the currently available A- and B-site ordered QPs with the
A’ site occupied by Cu ions and B/B’ sites occupied by
magnetic ions, a single magnetic transition driven by the
different sites of magnetic ions can usually be observed.”' >’
The spin arrangement is usually Cu(1)B(1)B’(]) with strong
Cu(1)B’({) and B(1)B’(!) antiferromagnetic (AFM) coupling
through a superexchange interaction (B and B’ represent 3d
and Sd transition-metal ions, respectively); the Cu(1)B(!)
AFM coupling is relatively weak. As a result, the Cu(1)B(1)
FM arrangement appears, followed by the magnetic frustration
in these systems. For the origin of magnetism in CCCRO, if
spin-only interactions are considered, the moments of Cu*,
Cr**, and Re** are M, = 1.0 yp, Mc, = 3.0 yp, and Mg, = 2.0
ug, respectively. However, in this case, Cu(1)Cr(1)Re(1),
Cu(1)Cr(1)Re(l), and Cu(1)Cr(})Re(1) alignments show
unreasonable moment values compared with the experiment.
Even though the Cu(1)Cr(1)Re(|) configuration (5.0 py/fu.)
shows the most reasonable value, it is still much larger than the
experimental result (1.6 pg/fu.). The magnetic properties
seem to be strongly influenced by the assumed configuration of
the B/B’-site Cr/Re arrangement, while the nominal valences
remain unaffected. This phenomenon is well documented in
DP families, in which the moment decreases with the increase

https://doi.org/10.1021/acs.inorgchem.3c04243
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Figure 3. (a) Temperature dependence of magnetic susceptibility
measured at 0.1 T with the FC mode for CCCRO. The inset shows
the temperature dependence of the first derivative of magnetic
susceptibility. (b) Field dependence of magnetization measured at
different temperatures for CCCRO.

of disorder.*> Moreover, in this case, although the strength of
the dominant magnetic Cu—Re and Cr—Re interactions is
slightly affected, the disordered arrangement of the Cr/Re ions
could introduce significant competition and uncertainty in spin
orientations at the B and B’ sites. As a result, the magnetic
frustration is markedly enhanced in the present sample.*® This
could explain the suppression of the saturated moment of 1.6
ug/fu. contrasting with the theoretical value of 5.0 yp/fu. in a
perfectly ordered state.

In order to study the electrical transport properties of
CCCRO, the temperature dependence of resistivity from 2 to
390 K and magnetoresistance effects [MR = 100% X (p(H) —
p(0))/p(0)] at 2 K were measured. The resistivity is at the
level of 107" Q cm at 390 K, and it slightly increases to about
3.7 Q cm at 2 K upon cooling, as shown in Figure 4(a). The
low-temperature specific heat of CCCRO can be well fitted
using the function C,/T =y + PT* + aT'? [see the inset of
Figure 4(b)], yielding y = 6.4(1) mJ/mol-K?, = 0.60(5) mJ/
mol'K*, and «a 10.3(6) mJ/mol-K*% The presence of
contribution of electrons can be obtained, as reflected by the
fitted Sommerfeld coefficient y 6.4(1) mJ/mol-K2.
Considering the polycrystalline nature of CCCRO, where
grain boundary scattering effects play some roles in resistance,
the weak temperature dependence of resistivity may imply
metallic conductivity. Notably, a butterfly-shaped MR curve
can be observed at 2 K [Figure 4(a)]. This feature typically
arises from intergrain tunneling of the spin-polarized
conduction electrons.'””” Note that the hysteresis field of
MR (1.5 T) is larger than that of magnetization (1.0 T),
indicating a spin-valve-type MR arising from the intergrain

3502

field for CCCRO. The inset shows the fitting result of specific heat
below 17 K using the function C,/T =y + BT + aT'?, yielding y =
6.4(1) mJ/mol-K? f = 0.60(5) mJ/mol-K*, and a = 10.3(6) mJ/mol-
I(S/Z.

tunneling for the spin-polarized carriers.”® This could imply a
half-metallic property. Similar phenomena were also observed
in the half-metallic QPs CaCu;Fe,Re,0;,, LaCu;Co,Re,0,,
and LaCu,Fe,Re,0,, "' 7 In these 3d—5d strongly hybridized
systems, a robust Cu—B—B’ covalent network can form
through intervening oxygens. This network, facilitated by
strong Cu—O—B and B—O—B’ pathway hybridizations, leads
to the previously discussed strong Cu(1)B(1)B’(l) magnetic
coupling. The extended Re t,, orbitals, with weak electron
correlation effects, dominate the electronic states near the
Fermi level and exhibit spin polarization.”” This results in a
metallic property in the down (minority) spin channel owing
to the partially filled t,, down spin orbitals. In the up
(majority) spin channel, the 3d electrons of B and Cu, showing
strong electron correlation effects, tend to favor a Mott
insulating state. Furthermore, in CCCRO, the t,, up spin
orbitals of Cr** are fully filled, tending to create a substantial
energy gap in this channel. Therefore, in comparison to QPs
ACu,Fe,Re,0,,”"***" with a similar crystal structure, as well
as DPs Sr,FeReO4 and Sr,CrReO¢"*™** with a comparable
electronic configuration, the half-metallic property is expected
to occur in the present CCCRO. The MR value of CCCRO at
2 Kand 7 T is less than 1%; the relatively small value is related
to the strong magnetic frustration, as well as the small amount
of Cr/Re disorder effects.*’

4. CONCLUSIONS

In summary, a new Cr-based QP oxide CCCRO has been
synthesized by using the high-pressure method. The CCCRO
QP compound shows both the A- and B-site ordered
perovskite structure with the space group Pn-3. The valence
states and local environment of Cu, Cr, and Re were studied by

https://doi.org/10.1021/acs.inorgchem.3c04243
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the XAS techniques, revealing a square-planar coordination of
Cu**Q, at the A’ site and an octahedral coordination of Cr**Qy
(Re**Oyg) at the B (B’) site, with the charge combination of
CaCu;**Cr,**Re,**Oy,. A high T above room temperature of
about 360 K is observed due to the magnetic coupling between
the transition-metal cations. Most intriguingly, the electric
transport measurements suggest that the CCCRO compound
exhibits half-metallic properties. The combination of high T¢
and half-metallicity in the current CCCRO demonstrates its
potential applications in spintronic devices.
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