物理学报 Acta Physica Sinica

多种有序钙钛矿结构的高压制备与特殊物性

殷云宇 王潇 邓宏芟 周龙 戴建洪 龙有文

High-pressure synthesis and special physical properties of several ordered perovskite structures

Yin Yun-Yu Wang Xiao Deng Hong-Shan Zhou Long Dai Jian-Hong Long You-Wen

引用信息 Citation: Acta Physica Sinica, 66, 030201 (2017) DOI: 10.7498/aps.66.030201 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.030201 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I3

您可能感兴趣的其他文章 Articles you may be interested in

基于二水草酸镁 (MgC₂O₄·2H₂O) 的无水碳酸镁 (MgCO₃) 的高压制备和表征

High pressure synthesis of anhydrous magnesium carbonate (MgCO₃) from magnesium oxalate dihydrate (MgC₂O₄·2H₂O) and its characterization 物理学报.2017, 66(3): 036202 http://dx.doi.org/10.7498/aps.66.036202

电子自旋共振研究Bi_{0.2}Ca_{0.8}MnO₃纳米晶粒的电荷有序和自旋有序

Electron spin resonance study on charge ordering and spin ordering in nanocrystalline Bi_{0.2}Ca_{0.8}MnO₃ 物理学报.2015, 64(18): 187501 http://dx.doi.org/10.7498/aps.64.187501

一类异构多智能体系统固定和切换拓扑下的一致性分析

Consensus analysis for a class of heterogeneous multi-agent systems in fixed and switching topology 物理学报.2014, 63(22): 220201 http://dx.doi.org/10.7498/aps.63.220201

量子顺电 EuTiO3 材料基态磁性的第一性原理研究

First-principles study of magnetic ground state of quantum paraelectric EuTiO₃ material 物理学报.2014, 63(8): 087502 http://dx.doi.org/10.7498/aps.63.087502

专题: 高压下物质的新结构与新性质研究进展

编者按 压力是基本的物理学参量之一,可有效地使物质的原子间距缩短、相邻电子轨道重叠增加,进而改变物质的晶体结构、电子结构和原子(分子)间的相互作用,形成常压下难以存在的新物质状态.这些物质多具有异于常压物质的结构、新颖的物理和化学性质.在100万大气压力下每种物质 平均可出现五个以上相变,即高压可提供超出现有材料数倍的新物质,为寻找特殊用途的新材料提 供了丰富的来源.在过去的十几年里,高压研究已经推广应用到更为宽广的领域,如能源科学、地质 科学、材料工程、资源环境以及生物科学等,取得了巨大的进展,正在改变人们对周围世界的认识.

近年来,国内高压科学得到了迅猛的发展,已经处于国际领先水平,取得了突破性进展和成果. 本刊特组织"高压下物质的新结构与新性质研究进展"专题,从高压下对物质的结构和性质研究两 方面,汇集了富氢材料、超导材料、超硬材料、有机分子材料等物质在高压作用下的研究论文和综述, 以帮助读者了解这个领域的最新进展,推动对高压下物质的结构和性质的进一步深入研究.

(客座编辑:吉林大学超硬材料国家重点实验室 崔田)

多种有序钙钛矿结构的高压制备与特殊物性^{*}

殷云宇¹) 王潇¹) 邓宏芟¹) 周龙¹) 戴建洪¹) 龙有文^{1)2)†}

1) (中国科学院物理研究所,北京凝聚态物理国家实验室(筹),北京 100190)

2) (量子物质科学协同创新中心, 北京 100190)

(2017年1月17日收到; 2017年1月18日收到修改稿)

具有 ABO₃ 钙钛矿或类似结构的强关联电子体系是凝聚态物理研究的重要前沿领域, 而高压是制备新型 钙钛矿特别是 A 位与/或 B 位有序钙钛矿材料的有效手段. 在这些有序钙钛矿中, 因 A, B 位可同时容纳过渡 金属离子, 因而可导致 A-A, B-B, A-B 等多种磁电相互作用的出现, 进而诱导系列新颖有趣的物理现象.本 文介绍高压下制备的几种化学式为 AA'₃B₄O₁₂ 的新型 A 位有序钙钛矿以及化学式为 AA'₃B₂B'₂O₁₂ 的 A, B 位同时有序的钙钛矿体系. 在 LaMn₃Cr₄O₁₂ 中发现了具有立方钙钛矿结构的磁电多铁性, 为多铁新材料探 索与新机理研究提供范例; 在 CaCu₃Fe₂Os₂O₁₂ 中发现了远高于室温的亚铁磁半导体行为, 并指出 A 位磁性 离子的引入可大大增加磁相互作用强度从而大幅度提高磁有序温度; 在 LaMn₃Ni₂Mn₂O₁₂ 中观察到 A 位磁 性离子调控的 B 位 Ni²⁺/Mn⁴⁺子晶格正交自旋有序结构. 以上研究结果为探索新型磁电多功能钙钛矿材料 提供了重要参考.

关键词: 高压合成, 有序钙钛矿, 多铁性, 自旋有序 PACS: 02.10.Yn, 33.15.Vb, 98.52.Cf, 78.47.dc

DOI: 10.7498/aps.66.030201

†通信作者. E-mail: ywlong@iphy.ac.cn

© 2017 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

^{*} 国家重点基础研究发展计划 (批准号: 2014CB921500)、国家自然科学基金 (批准号: 11574378) 和中国科学院先导 B 项目 (批准号: XDB07030300) 资助的课题.

1引言

在 ABO₃ 钙钛矿中 (图 1 (a)), A 位往往由碱土 金属、碱金属或稀土离子占据, 形成 AO₁₂ 配位多面 体, 主要起到支撑结构的作用; 而 B 位通常由过渡 金属 (transition metal, TM) 离子 (包括 3d, 4d, 5d 等) 占据, 形成 BO₆ 配位的八面体, 很大程度上决 定了材料的电子性质. 由于 A, B 离子间可形成不 同的电荷组态(包括A¹⁺B⁵⁺, A²⁺B⁴⁺, A³⁺B³⁺, A⁴⁺B²⁺等不同类型),钙钛矿不仅具有灵活多变的 晶体构型,同时也展示了丰富多彩的物理性质与 功能特性,譬如压电、铁电、高温超导、巨磁电阻、 多铁性等^[1-19].在凝聚态物理研究的近几十年中, 钙钛矿成为强关联电子体系的重要研究对象,众 多新颖有趣的量子衍生现象在钙钛矿中不断被发 现^[20-25].

图 1 不同类型钙钛矿晶体结构示意图 (a) 简单 ABO_3 钙钛矿晶体结构; (b) B 位有序双钙钛矿 $A_2BB'O_6$ 晶体 结构; (c) A 位有序钙钛矿 $AA'_3B_4O_{12}$ 晶体结构; (d) A, B 位同时有序四重钙钛矿 $AA'_3B_2B'_2O_{12}$ 晶体结构 Fig. 1. Schematic view of different types of perovskites. The crystal structures of (a) simple ABO_3 perovskite, (b) B-site ordered double perovskite $A_2BB'O_6$, (c) A-site ordered perovskite $AA'_3B_4O_{12}$, and (d) both Aand B-site ordered quadruple perovskite $AA'_3B_2B'_2O_{12}$.

正因为钙钛矿具有灵活多变的晶体结构,通 过合适的元素替代,可以形成不同类型的有序结构.比如在简单*ABO*₃钙钛矿中,用另外一种TM 离子*B*′替代二分之一的*B*位离子,可形成化学 式为*A*₂*BB*′O₆的*B*位有序双钙钛矿(图1(b)).最 近广受关注的高温铁磁(ferromagnetic, FM)半金 属Sr₂FeMoO₆以及具有更高居里温度(约725 K) 的Sr₂CrOsO₆均是*B*位有序双钙钛矿的典型代 表^[26,27].TM离子除了占据钙钛矿的*B*位外,能否 通过特殊的合成方法也引入到*A*位呢?研究表明, 如果将四分之三的*A*位离子用特殊的TM离子*A*′ 替代,可以形成化学式为*AA*′₃*B*₄O₁₂的*A*位有序钙 钛矿(图1(c)).然而,由于*A*′位TM离子的半径大 大低于传统 A 位离子半径,为了维持钙钛矿结构, BO₆ 八面体之间会发生严重倾斜,以致 B—O—B 键角往往在 140° 左右.虽然单个的 BO₆ 八面体可 能是刚性的,但这种严重倾斜的有序钙钛矿通常只 有在高压高温条件下才能合成.另一方面,虽然这 种特殊有序钙钛矿的 A 位仍然形成 AO₁₂ 配位,但 A' 位形成平行四边形配位的 A'O₄ 单元,意味着具 有强 Jahn-Teller 畸变的离子如 Cu²⁺, Mn³⁺等更 有利于占据 A' 位.因为 A 位有序钙钛矿的 A' 位与 B 位同时容纳 TM,因此除了常见的 B-B 相互作用 外,也存在新型的 A'-A' 相互作用以及 A'-B 位间的 相互作用.这些相互作用的出现,势必导致新颖物 理性质的出现.比如,在 B 位非磁的 CaCu₃Ge₄O₁₂ 与 CaCu₃Sn₄O₁₂ 中, A'位磁性 Cu²⁺ 离子的相互作 用可诱导长程 FM 有序^[28]; CaCu₃Ti₄O₁₂ 在宽温 区内展示了超高的且几乎恒定的介电常数^[29]; 在 RCu₃Fe₄O₁₂ (R = La—Gd, Bi)等A位有序钙钛 矿中发现了 Cu-Fe 金属间电荷转移与负热膨胀等 功能性质^[30-34].

进一步地,针对A位有序钙钛矿AA'₃B₄O₁₂, 如果继续进行合理的化学替代,那么可以形成 A,B位同时有序的钙钛矿结构,其化学式为 AA'₃B₂B'₂O₁₂(图1(d)).相比A位或B位单独有 序的钙钛矿,A,B位同时有序的钙钛矿研究较少. 但因为这类化合物包含更多的磁电相互作用,其潜 在的新颖性能有待我们去发掘.考虑到简单ABO₃ 钙钛矿和A₂BB'O₆型B位有序钙钛矿已有过非 常详细的研究与报道,本文结合最近的研究工作, 主要介绍我们在A位有序钙钛矿以及A,B位同时 有序钙钛矿中发现的新现象与新物理.

2 A位有序立方钙钛矿磁电多铁性材 料LaMn₃Cr₄O₁₂

磁电多铁性材料是指同时具有长程磁有序与 电极化有序,甚至这两种有序相互耦合的材料体 系. 钙钛矿是多铁性研究最重要的材料体系之一, 例如多铁研究的明星材料 BiFeO3 和 TbMnO3 便具 有钙钛矿结构^[35,36]. 众所周知, 立方钙钛矿晶格具 有反演对称中心,结构对称性上不支持铁电性的出 现. 但是, 磁电多铁材料电极化的产生除了晶体结 构的因素外,也可以来自于特殊的自旋结构^[37-40]. 原则上,如果立方钙钛矿的磁结构打破空间反演对 称性, 那么同样可以产生电极化. 然而, 这种现象 在以往所有的立方钙钛矿中未曾发现. 在A位有序 钙钛矿 AA'₃B₄O₁₂ 中, TM 离子同时占据 A' 位和 B 位,从而可引入多重磁电相互作用.因此,通过选 取合适的A', B位磁性离子, 一方面可维持立方钙 钛矿晶体结构,另一方面也可能形成特殊的自旋有 序结构打破空间反演对称性,从而诱导磁电耦合多 铁现象. 实验表明, 我们在高压高温条件下制得的 LaMn₃Cr₄O₁₂ (LMCO) 是第一个被发现的具有立 方钙钛矿结构的磁电多铁性材料[41].

利用高温高压实验条件(8 GPa, 1400 K), 我

们获得了高质量LMCO多晶样品^[42]. 图2给出 了该化合物在不同温度下的粉末X射线衍射(Xray diffraction, XRD)谱. 结果表明在293—23 K 温度范围内LMCO始终保持A位有序钙钛矿结 构,具有立方的Im-3 空间群,晶体结构示意图 见图1(c). 通过磁化率、磁化强度和比热测试, 我们发现LMCO存在两个反铁磁(antiferromagnetic, AFM)相变,其相变温度分别为 $T_{Mn} \sim 50$ K 和 $T_{Cr} \sim 150$ K(图3).

为了探究LMCO的AFM相变起源,我们对该 体系进行了中子粉末衍射 (neutron powder diffraction, NPD) 实验 (图 4). 与低温 XRD 结果一致,低 温 NPD 表明,即使温度降低至 2 K,LMCO 仍然保 持空间群为 Im-3的 A 位有序立方钙钛矿晶体结 构.同时,根据衍射峰 (111) 和 (100) 随温度的变化 情况 (图 5),我们可以得知 $T_{\rm Cr} \sim 150$ K的AFM 相 变来自 B 位 Cr³⁺ 磁性离子子晶格的自旋有序,而 $T_{\rm Mn} \sim 50$ K的AFM 相变则源于 A' 位 Mn³⁺ 磁性 离子子晶格的自旋有序.进一步分析表明,不论是 B 位 Cr³⁺ 子晶格还 A' 位 Mn³⁺ 子晶格,都各自形 成 G 型 AFM 结构,磁矩最可能均沿 [111] 方向平行 排列 (图 6).显然,这种共线形式的 AFM 有序与实 验所测得的线性磁化行为是一致的 (图 3 (b)).

LMCO的介电常数 ε 与温度的依赖关系如 图7所示. 在50 K处介电常数表现出显著的异 常(图7(a)),这一温度与LMCO的AFM相变温度 $T_{\rm Mn} \sim 50 \, {\rm K}$ 一致.同时,该处介电常数的变化不 受测试频率的影响,预示着本征磁电耦合相变的 发生.为了进一步研究50 K 附近可能的磁有序诱 导的铁电相变,我们对热释电电流 IP 和电极化强 度P进行了测试(图7(b)和图7(c)).显然, I_P 和 P在 T_{Mn} 以下均可以被极化电场 E 翻转, 进一步 证实磁电耦合的出现,与介电常数 ε 的测试结果一 致(图7(a)).因此,在 T_{Mn} 处的低温铁电1相(ferroelectric 1 phase, FE1) 与材料的磁有序存在着紧 密的关联. 另外, 在高温区, 极化电流 IP 和极化强 度**P**从180 K附近开始出现,并在125 K附近形成 一个较宽的峰(图7(b)),由于这两个特征温度与 AFM 相变温度 $T_{Cr} \sim 150$ K不同,因此,高温铁电 2相 (ferroelectric 2 phase, FE2) 不一定代表材料的 本征特性,本文中不展开详细讨论.

物理学报 Acta Phys. Sin. Vol. 66, No. 3 (2017) 030201

图 2 (a) LMCO 变温 XRD, 衍射峰根据立方 *Im-3* 空间群进行指标化, 星号表示样品中少量的 Cr₂O₃ 杂质; (b)—(e) 几个主要衍射峰的放大图, 清楚表明样品在 293—23 K 没有结构相变发生

Fig. 2. (a) Temperature dependent XRD of LMCO. The diffraction peaks are indexed based on the space group of Im-3. The stars show the diffraction peaks originating from a small amount of Cr_2O_3 impurity. (b)–(e) The enlarged views for several representative diffractions peaks. No structural phase transition occurs as temperature decreases from 293 to 23 K.

图 3 (a) LMCO 的磁化率和比热随温度的变化; (b) 不同温度下 LMCO 的磁化强度随磁场的变化, 其线性行为与中子粉末衍射揭示的 G-型 AFM 有序一致

Fig. 3. (a) Temperature dependence of magnetic susceptibility and specific heat of LMCO; (b) magnetization measured at various temperatures, the linear magnetization behaviors are consistent with the collinear G-type AFM structure as revealed by neutron powder diffraction.

图 4 不同温度下采集的 LMCO 的 NPD 数据及其精修结果, 可观察到少量 Cr_2O_3 和 MnCr_2O₄ 杂质 (< 5 wt%) Fig. 4. The NPD data as well as the Rietveld refinements for LMCO collected at different temperatures. A small amount of Cr_2O_3 and $MnCr_2O_4$ impurity phases (< 5 wt%) is observed.

图 5 LMCO 的 (111) 和 (100) NPD 峰的积分强度随温 度的变化

Fig. 5. Temperature dependence of the integrated NPD intensities of (111) and (100) peaks of LMCO.

我们注意到,在 T_{Mn} 处的极化电流 I_P 并不 是单个峰或谷,而是表现出反常的谷-峰特征 (图7(b));同时,在 T_{Mn} 附近,随着温度下降,电 极化P(T)先稍有减小,然后增加(图7(c)).这一 行为表明此处存在着两种不同的电极化起源.为了 证明这一点,我们使极化电场 E 分别只经过180 K 和TMn 处两个电极化的其中之一,得到了显著不同 的结果.如图8(a)和图8(b)所示,当极化电场 E 只覆盖200—75 K时,极化电流 IP 只表现出谷的 特征; 当极化电场 E 只覆盖 75—30 K时, 极化电 流 IP 只表现出峰的特征. 相应的, 当极化电场 E 只通过180 K时, Mn 自旋有序导致的电极化差值 $(\Delta P = P(T) - P(50 \text{ K}))$ 为负; 而当极化电场 E 只通过 $T_{\rm Mn}$ 时, ΔP 为正(图 8 (c)). $I_{\rm P}$ (200—75 K) 在T_{Mn}处的谷表明,尽管FE2相形成于高温区,但 当Mn和Cr在 T_{Mn} ~50 K均实现自旋有序时仍然 使铁电极化 P 发生同量级的减小. 更有趣的是, IP (75-30 K)的峰表明, TMn 处形成的低温 FE1 相独 立于FE2 相. 由于FE1相与AFM有序密切相关, 因此LMCO是一种新的自旋诱导的铁电材料.

图 6 (a), (b) 分别给出了 B 位 Cr 子晶格和 A' 位 Mn 子晶格沿 [111] 方向的 G 型 AFM 结构; (c) Cr, Mn 子晶格在 $T_{\rm Mn}$ 以下形成的总的磁结构;为了清楚起见,图中略去了 La 和 O 原子,其中,蓝色球代表 Cr 原子,红色球代表 Mn 原子 Fig. 6. (a), (b) G-type AFM structure of the *B*-site Cr-sublattice and the A'-site Mn-sublattice with spin orientation along [111] direction, respectively; (c) a complete set of spin alignment composed of Cr and Mn spins below $T_{\rm Mn}$. For clarity, La and O atoms are omitted in the structures. Blue ball, Cr atom; red ball, Mn atom.

图7 (a) 介电常数 ε 和磁化率 χ , (b) 热释电电流 $I_{\rm P}$ 和 (c) 在正、负电极化条件下铁电极化强度 P 随温度的变化; ε 和 $I_{\rm P}$ 是在没有外磁场的条件下测得的, (b) 和 (c) 中的 插图给出了 50 K 附近的放大图

Fig. 7. Temperature dependence of (a) dielectric constant ε and magnetic susceptibility χ , (b) pyroelectric current $I_{\rm P}$ and (c) ferroelectric polarization P in both +poled and -poled conditions. ε and $I_{\rm P}$ are measured without magnetic field. The insets of (b) and (c) show the enlarged views near 50 K.

为了进一步证明 FE1 相的热释电信号来源于 材料本征的铁电极化而非空间电荷效应,我们用不 同的外磁场对热释电电流 $I_{\rm P}$ 和介电常数 ε 进行了 测试.如图 9 (a) 所示,在 $T_{\rm Mn}$ 及更低温度时,磁电 及磁介电效应表现出显著的各向异性.当外磁场平

图 8 T_{Mn} 以下电极化行为对极化程序的依赖关系 (a) 分别 在 200—75 K和 75—30 K温度区间进行正、负电极化后, 热 释电电流 I_P 随温度的变化; (b) 热释电电流 I_P 和 (c) 电极化 的差值 ΔP (= P(T) - P (50 K) 随温度的变化

Fig. 8. Poling procedure dependence of electric behaviors below $T_{\rm Mn}$. (a) Temperature dependence of pyroelectric current $I_{\rm P}$ by +poled and –poled under 200– 75 K and 75–30 K poling conditions. Temperature dependence of (b) $I_{\rm P}$ and (c) the difference of polarization $\Delta P(= P(T) - P (50 \text{ K}))$ after being +poled from 200 K down to the selected temperatures. 行于极化电场 (H//E)时, $I_{\rm P} 在 T_{\rm Mn}$ 附近有一个量级的增加, 30 K 处的铁电极化的差值 $|\Delta P|$ 也从约 15 μ C/m²增加至约 68 μ C/m² (图 9 (b)); 当外磁场垂直于极化电场 ($H \perp E$)时, 热释电电流 $I_{\rm P}$ 在7 T 时几乎完全被压制.

图 9 50 K之下不同极化条件以及不同磁场下的 (a) 热释 电电流 $I_{\rm P}$ 和 (b) 极化差值 ΔP 随温度的变化关系 Fig. 9. (a) Temperature dependence of $I_{\rm P}$ and (b) the difference of polarization ΔP at different poling conditions and different magnetic fields below 50 K.

类似地,对于不同的磁场/极化场配置,介电 常数 ε 也表现出不同的行为.当H//E时, ε 在 T_{Mn} 处的突变随磁场的增加而更尖锐(图10(a)); 而当 $H \perp E$ 时, ε 在 T_{Mn} 处的突变随磁场的增加受 到明显的抑制,当磁场高于7 T时几乎完全消失 (图10(b)),这与上文提到的铁电极化受到磁场抑 制的情形一致.另一方面,当温度高于 T_{Mn} 时,两 种磁场/极化场配置下的 I_{P} 和 ε 均不受磁场变化的 影响,表明了FE1与FE2具有不同的铁电起源.因 此,上述的测试结果表明,FE1相具有强的磁各向 异性,多铁性源于LMCO特殊的自旋有序结构.

对于自旋诱导的铁电极化,目前主要有三种 理论模型用于解释相关的磁电耦合多铁机理^[43,44]. 首先是反Dzyaloshinskii-Moriya相互作用(又称为 自旋流模型),其多铁性源于自旋的叉积.由于 LMCO中的磁矩均为共线排列,因此这一模型无法 解释LMCO的多铁性.另一种理论模型为交换收 缩机理,其铁电极化来源于一对自旋的点积.并且 如果这对自旋始终相互平行或反平行排列,电极化 将与自旋的取向无关.而对于LMCO,根据磁点群 分析和理论计算,FE1相的极化方向总是随自旋方 向改变,因此交换收缩模型也无法解释LMCO磁 电多铁性的成因.此外,第三种单一自旋机理(例 如d-p杂化模型),也无法解释立方钙钛矿LMCO 自旋诱导的多铁行为.

从上述NPD结果可知, 当 *T*_{Mn} < *T* < *T*_{Cr} 时, Cr 子晶格形成沿[111]方向的G型AFM有序 (图 6 (a)), 同时, LMCO具有*Im*-3的空间群, 因此,

图 10 (a), (b) 分别在 *H*//*E* 和 *H*⊥*E* 配置下, 1 MHz 频率和不同磁场下介电常数 *ε* 随温度的 变化 (为了清楚起见, 对数据进行了平移)

Fig. 10. (a), (b) Temperature dependence of ε measured at 1 MHz and different magnetic fields with H//E and $H\perp E$ configurations, respectively. The data are shifted for clarity.

该温区的磁点群为具有反演对称中心的非极化 的-3'点群. 当 $T < T_{Mn}$ 时, Mn子晶格也形成沿 [111]方向的G型AFM有序,其磁点群同样为具有 反演对称中心的非极化-3点群(图6(b)). 因此, 单独考虑Cr, Mn子晶格,均不允许产生铁电极化. 然而,当同时考虑Cr, Mn子晶格的磁点群时,整个 体系将变为极化的3点群(图6(c)),从而允许沿着 自旋方向的电极化的产生.因此,FE1 相中的铁电 极化源自Cr, Mn 自旋的共同作用,LMCO成为第 一个被发现的具有立方钙钛矿结构的磁电耦合多 铁材料.

通过密度泛函理论 (density functional theory, DFT)的计算,我们可以对FE1相中自旋诱导的 铁电性有更进一步的了解.计算得到的态密度 (density of states, DOS)如图11所示.可以看出, LMCO具有1.75 eV的能隙,为绝缘体.计算得到 的 Mn^{3+} (3.907 μ_B)和 Cr^{3+} (2.799 μ_B)的自旋磁 矩也与NPD的精修结果一致(表1).使用Berry相 方法^[45],利用实验得到的磁结构并采用弛豫方法, 计算得到如下结果: 1)当不考虑磁性离子的自旋 轨道耦合 (spin-orbital coupling, SOC)时,计算得 到的FE1相的铁电极化值为0; 2)当对所有自旋方 向与[111]方向平行或反平行的磁性原子考虑SOC 时,对于如此高对称性的结构,仍能沿[111]方向产 生一个小的电极化,其大小约为3.4 C/m².这一结 果不包括离子位移的贡献,而是纯粹由电子云的空 间极化导致的;3)当进一步同时考虑离子弛豫和 SOC时,计算得到沿[111]方向高达7.5 C/m²的电 极化值.这一计算结果与实验值(图8(c))在量级 上一致,同时也与磁点群的分析得到的极化磁结构 一致.

图 11 不考虑 SOC 的双 G-型 AFM 结构的 DFT 计算结 果,图中给出了每种原子的投影态密度

Fig. 11. DFT results with the dual G-type antiferromagnetism (without SOC). Projected density of state (PDOS) for each atom species is shown.

表1 LMCO 不同温度下 NPD 数据精修给出的结构参数 (空间群, *Im*-3 (No. 204); 原子位置 La 2a (0,0,0), Mn 6b (0,0.5,0.5), Cr 8c (0.25,0.25,0.25), O 24g (0, y, z))

Table 1. Refined structural parameters for the NPD data of LMCO at different temperatures. Space group, Im-3 (No. 204); atomic positions, La 2a (0,0,0), Mn 6b (0,0.5,0.5), Cr 8c (0.25, 0.25, 0.25), O 24g (0, y, z).

${\rm LaMn_3Cr_4O_{12}}$	温度/K				
	2	35	80	170	
$a/{ m \AA}$	7.39805(9)	7.3988(1)	7.3996(1)	7.4028(1)	
O_y	0.3104(4)	0.3096(4)	0.3099(4)	0.3102(3)	
O_z	0.1771(4)	0.1765(5)	0.1767~(4)	0.1757(4)	
$U_{\rm iso}({\rm O})/{\rm \AA}^2$	0.004(2)	0.004(2)	0.004(2)	0.004(2)	
$U_{\rm iso}({\rm La})/{\rm \AA}^2$	0.009(3)	0.005(3)	0.008(3)	0.009(3)	
$U_{\rm iso}({\rm Mn})/{\rm \AA}^2$	0.040(3)	0.036(3)	0.037(3)	0.032(3)	
$U_{\rm iso}({\rm Cr})/{\rm \AA}^2$	0.054(3)	0.055(3)	0.048(3)	0.048(3)	
${\rm Mn}{\rm -O/\AA}(\times6)$	1.919(3)	1.921(3)	1.921(3)	1.915(2)	
$Cr-O/Å(\times 6)$	1.978(3)	1.978(4)	1.978(3)	1.981(5)	
La—O/Å(\times 4)	2.644(3)	2.637(3)	2.639(3)	2.639(1)	
$Cr-O-Cr/(^{\circ})$	138.52(4)	138.54(5)	138.55(4)	138.14(4)	
$M({ m Mn})$	$3.40(8)~\mu_{\rm B}$	$2.66(9)~\mu_{\rm B}$			
$M({ m Cr})$	$2.89(6)~\mu_{\rm B}$	$2.81(6)~\mu_{\rm B}$	$2.50(3)~\mu_{\rm B}$		
$R_{ m Bragg}/\%$	1.60	3.70	2.79	2.88	
χ^2	1.81	1.77	1.73	1.68	

综上所述,这项研究不仅在立方晶格多铁性材 料方向取得了重要突破,而且发现了全新的多铁物 理机理.DFT计算表明磁性离子的SOC效应对电 极化的出现起到了至关重要的作用,但是,现有的 几种磁有序产生多铁性的理论模型都不足以解释 这种特殊多铁性的微观起源,需要发展全新的多铁 性理论模型.此外,由于没有离子位移的贡献,该 体系的电极化可能完全由电子云的偏移而产生,因 此LMCO也成为研究新型电子型铁电体的典型对 象.对立方钙钛矿中多铁性起源和磁电耦合机理的 进一步深入探讨,将对多铁性新材料探索与新物理 的研究产生深远影响.

3 单相高温亚铁磁半导体CaCu₃Fe₂-Os₂O₁₂

铁磁体与半导体是两种非常重要的功能材料 体系, 在现代工业中有着广泛的应用. 如果能把这 两种功能属性集成到同一单相材料中,势必为多 功能自旋电子学器件的发展提供契机,但由于铁 磁体和半导体在晶体结构、化学键和电子结构等 方面具有本质差别,很难找到高于室温(room temperature, RT) 的单相铁磁或亚铁磁 (ferrimagnetic, FIM)半导体材料^[46-49]. 虽然多年来研究人员对 稀磁半导体的研究做出了巨大努力,但是由于其 本征掺杂浓度的限制, 难以找到居里温度高于RT 的FM或FIM半导体. 然而, 通过对晶体结构和电 子结构的人为设计,具有高转变温度的FM或FIM 的半导体在A, B位同时有序的四重钙钛矿体系 AA'₃B₂B'₉O₁₂ (图1(d))中是有可能实现的. 在这 种特殊结构中,多种磁性离子(A', B, B')之间复 杂的相互作用,导致了许多新奇的物理性质^[50-52]. 因此, 通过选取不同的磁性离子组合, 一方面可调 控材料的电学性质,另一方面可调控磁相互作用, 从而有可能得到RT以上单相FM或FIM半导体.

我们通过高压高温的手段合成了一种新的强 关联电子体系,即A,B位同时有序的四重钙钛矿 结构材料CaCu₃Fe₂Os₂O₁₂ (CCFOO)^[53].该材料 具有远高于RT的磁转变温度(约580 K),并且在 低温下的饱和磁化强度约5 $\mu_B/f.u.$,预示着Cu²⁺ (↑) Fe³⁺(↑) Os⁵⁺(↓)的FIM自旋排列方式.光电流 测量与DFT计算^[54]表明该体系的能隙约1.0 eV, 证实其具有半导体性质.因此,CCFOO作为一种 少有的高温 FIM 半导体材料, 在未来多功能自旋电 子学器件开发上具有潜在应用.

图 12 是 RT 下 CCFOO 的 XRD 图谱,图中存 在明显的 h+k+l = 奇数的特征衍射峰 (例如 (111),(311)等),表明 B 位 Fe 和 Os 的岩盐矿类型的有序排列^[55].基于 Rietveld 方法的结构精修表明,CC- $FOO 属于 A, B 位同时有序的 <math>AA'_3B_2B'_2O_{12}$ 型四 重钙钛矿结构,其空间群为 Pn-3 (图 1 (d)).在 这个结构中,A 位的 Ca 和 A' 位的 Cu 分别占据固 定的 2a (0.25,0.25,0.25)和 6d(0.25,0.75,0.75)位置, 而 B 位的 Fe 和 B' 位的 Os 有序地分布在 4b (0,0,0) 和 4c (0.5,0.5,0.5)位置上.进一步的分析表明, A 位的 Ca 和 A' 位的 Cu 几乎形成理想的1:3占 位; B/B' 位 Fe 和 Os 形成1:1岩盐矿的有序排列, 但是 Fe-Os 之间存在约 11%的反占位.表2列出了

图 12 RT下 CCFOO 的 XRD 图谱和结构精修结果 Fig. 12. XRD pattern and structure refinement results obtained at RT of CCFOO.

表 2 RT 下 CCFOO 的结构参数精修结果 Table 2. Refined structure parameters of CCFOO at RT.

参数	CCFOO
$a/{ m \AA}$	7.42695(6)
O_x	0.257(3)
O_y	0.435(2)
O_z	0.564(4)
Cu—O/Å (\times 4)	1.949(6)
Fe—O/Å ($\times 6$)	2.025(2)
Os—O/Å ($\times 6)$	1.928(2)
$Fe-O-Os/(^{\circ})$	139.9(3)
Cu — O — $Fe/(^{\circ})$	108.0(2)
$\mathrm{Cu-\!\!-\!Os/(^\circ)}$	112.1(2)
$R_{ m wp}/\%)$	5.13
$R_{ m P}/\%$	2.95

CCFOO 的结构精修参数. 根据相应的键长, 用键 价计算 (bond valence sum, BVS) $^{[56,57]}$ 可得到 Cu, Fe, Os 的价态分别为+2.11, +2.87, +5.23, 给出 了 CaCu₃²⁺Fe₂³⁺Os₂⁵⁺O₁₂ 的价态分布. 该 BVS 结 果与后面的 X 射线吸收谱 (X-ray absorption spectroscopy, XAS) 的实验结果一致.

图 13 (a) Cu-L_{2,3}, (b) Fe-L_{2,3} 以及 (c) Os-L₃ 的 XAS, 图中给出了相关的参考样品作为对比

Fig. 13. XAS of (a) Cu- $L_{2,3}$ edges, (b) Fe- $L_{2,3}$ edges, and (c) Os- L_3 edges. The XAS of related references are also shown for comparison.

TM离子具有可变的化合价态,不同价态可能具有不同的磁、电特性.XAS对3dTM离子的价态十分敏感,因而是检验TM价态的有效手段.为了进一步确定CCFOO的化合价态,我们对该材料进行了XAS的测试.图13(a)给出了CCFOO

的Cu-L_{2.3}吸收边,其中Cu₂O,CuO和NaCuO₂作 为纯的Cu¹⁺, Cu²⁺, Cu³⁺参照物^[58,59]. 很明显, NaCuO₂的峰位比CuO高了约1.8 eV. 更重要的 是我们在CCFOO的Cu-L2.3 吸收边能看到能量 类似于 $Cu^{2+}O$ 的 $Cu-L_{2,3}$ 尖锐的的对称峰, 而观 察不到与Cu¹⁺和Cu³⁺相关的光谱特征,因此 可以确定CCFOO中Cu为+2价. 图13(b)给出 了 Fe-L_{2.3} 吸收边,并且用 Fe_{0.04} Mg_{0.96} O 和 Fe₂O₃ 作为高自旋六配位的Fe²⁺和Fe³⁺的参照物^[60]. 可以看出, CCFOO具有和 $Fe_2^{3+}O_3$ 类似的光谱 形状和相同能量的峰位,但是比 $Fe_{0.04}^{2+}Mg_{0.96}O$ 低 1.9 eV, 给出了 CCFOO 的高自旋 Fe³⁺ 的化合 价. 图 13(c) 是 Os-L_{2,3} 吸收边, 其中参照物为+5 价的 Sr_2FeOsO_6 ^[61]和+4价的 La_2MgOsO_6 ,容易 看出 CCFOO 的 Os-L3 吸收边比 La2 MgOs4+O6 高 1.2 eV,与Sr₂FeMo⁵⁺O₆落在相同的能量位置,证 明了 CCFOO 中 Os⁵⁺ 的价态.因此, XAS 清楚地 表明了A, B位同时有序钙钛矿CCFOO中Cu²⁺, Fe³⁺, Os⁵⁺ 的价态配置.

图 14为CCFOO 的磁性测量结果. 图 14 (a) 为不同温度下 (2, 200, 400 K) 的等温磁化曲线, 可以看出在每个测试温度都有明显的磁滞回线, 表明材料具有FM或FIM性. 2 K的饱和磁矩约 5 μ_B . 值得注意的是,即使温度高达400 K时还 有 2 μ_B 的饱和磁矩,表明材料中存在强的FM 或FIM磁相互作用. 磁化率测试表明,随着温 度降低至约580 K, CCFOO的磁化率显著增加, 表明顺磁 (paramagnetic, PM) 向FM或FIM相变 (图 14 (b)). 因此, CCFOO 具有远高于 RT 的居里 温度 ($T_C \sim 580$ K).

在这个复杂的*A*, *B*位同时有序钙钛矿CC-FOO中,所有的TM离子Cu²⁺ (*S* = 1/2), Fe³⁺ (*S* = 5/2), Os⁵⁺ (*S* = 3/2)均可参与自旋交换相互 作用.在不考虑Os⁵⁺的SOC情况下,根据局域电 子模型,FM共线排列的Cu²⁺(↑)Fe³⁺(↑)Os⁵⁺(↑) 和FIM共线排列的Cu²⁺(↑)Fe³⁺(↓)Os⁵⁺(↓)给出 的磁矩分别为19 $\mu_{\rm B}$ /f.u.和13 $\mu_{\rm B}$ /f.u.,远大于实验 观察到的5 $\mu_{\rm B}$ /f.u.而Cu²⁺(↓)Fe³⁺(↑)Os⁵⁺(↑) 的FIM共线排列得到的磁矩(1 $\mu_{\rm B}$ /f.u.)又过小. 因此,只有Cu²⁺(↑)Fe³⁺(↑)Os⁵⁺(↓)的FIM共线 排列方式(7 $\mu_{\rm B}$ /f.u.)的饱和磁矩与实验观察到的 数据最为相近.可以猜测, *B*/*B*′位Fe/Os的反占 位排列以及Os-5d和O-2p轨道的强烈杂化是最可 能导致实验饱和磁矩小于理想值的原因.此外, CCFOO中Cu²⁺(\uparrow)Fe³⁺(\uparrow)Os⁵⁺(\downarrow)的FIM排列 方式也被X射线磁圆二色(X-ray magnetic circular dichroism, XMCD)光谱所证实.如图14(c)和 图 14 (d) 所示, Fe 和 Cu- $L_{2,3}$ 吸收边相同的 XMCD 光谱符号揭示了 $A' \oplus Cu^{2+}$ 和 $B \oplus Fe^{3+}$ 之间的 FM 排列, 这与推测的 Cu²⁺(\uparrow) Fe³⁺(\uparrow) Os⁵⁺(\downarrow) 的 FIM 自旋排列相一致.

图 14 (a) 不同温度下磁化率随磁场的变化; (b) 0.1 T下零场冷 (zero-field cooling, ZFC) 和场冷 (field cooling, FC) 模式下的磁化率随温度的变化; (c), (d) Fe- $L_{2,3}$ 和 Cu- $L_{2,3}$ 的 XMCD. X 光的偏振方向分别平行 (μ_+ 黑线) 和反平行 (μ_- 红线) 于外加磁场方向. 蓝线是差值曲线

Fig. 14. (a) Field dependent magnetization measured at different temperatures; (b) temperature dependent magnetic susceptibility measured at 0.1 T with ZFC and FC modes; (c), (d) XMCD for Fe- and Cu- $L_{2,3}$ edges. The photon spin is aligned parallel (μ_+ black line) and antiparallel (μ_- red line) to the applied magnetic field, respectively. The difference spectra are shown in blue.

图 15 RT 下不同波长的光辐照时 CCFOO 被激发的光 电流信号, 插图给出了电阻率随温度的变化

Fig. 15. Photocurrent signals excited by light radiation with different wavelengths in CCFOO at RT. The inset shows the temperature dependence of resistivity. 我们用多晶的CCFOO样品进行了电输运测 量.为了减小晶界效应,我们把多晶块体在高压 下(约6 GPa)进行处理.如图15中插图所示,随着 温度的降低,样品电阻逐渐增大,在低温下达到了 10⁴ Ω·cm 量级,表明该材料具有半导体/绝缘体性 质.为了准确地确定该材料的能隙,我们进一步在 RT 下做了光电流的测量(图15).随着光波长的减 小,在约1350 nm 时,光电流信号突然增加,说明在 RT 下, CCFOO 多晶材料的能隙约为0.92 eV.

为进一步理解 CCFOO 的电子结构,我们进行了相应的 DFT 计算,并且用广义梯度近似 (general gradient approximation, GGA) 和 GGA+U(U表示电子关联能; Fe, $U_{\text{eff}} = 5 \text{ eV}$; Cu, $U_{\text{eff}} = 4 \text{ eV}$)的自旋极化方法来确定不同的磁基态的能量.

不论是GGA还是GGA+U 的方法,磁基态总是 收敛成为 $Cu^{2+}(\uparrow)$ Fe³⁺(\uparrow) Os⁵⁺(\downarrow)的FIM有序, 与实验结果相一致. DFT计算给出的总磁矩为 7.01 μ_B/f.u., 其中Cu, Fe, Os 的磁矩分别为0.627, 4.043 和-1.421 μ_B. 当考虑 SOC 效应的影响时, 计算结果仅发生细微改变, Cu, Fe, Os的磁矩分 别变为 0.603, 4.013 和-1.315 μ_B, 总的磁矩值为 7.19 μ_B/f.u.. 图 16 是计算得到的电子能带结构和 局部的DOS. 计算揭示了CCFOO的半导体属性: 基态时,自旋向上的能带有约1.8 eV的能隙,而自 旋向下的能带的能隙约为1.0 eV. 计算结果与光电 流测量结果一致,表明了材料半导体的本征性质. 另外,计算表明在B位有序钙钛矿 Ca_2 FeOsO₆与 A, B 位同时有序钙钛矿 CaCu₃Fe₂Os₂O₁₂中, Fe-Os之间的磁交换相互作用强度非常近似,因此不 能作为CCFOO具有高的居里温度的主导因素. 然 而, A'位Cu²⁺离子的引入可产生较强的Cu-Fe以 及Cu-Os磁相互作用,因而使得CaCu₃Fe₂Os₂O₁₂ 的 FIM 居里温度 ($T_{\rm C} \sim 580$ K) 远高于 Ca₂FeOsO₆ 的 FIM 居里温度 $(T_{\rm C} \sim 320 \text{ K})^{[53]}$. 由此可见, 在 A 位引入额外的磁性离子从而增加体系总的磁相互 作用强度, 是提高有序钙钛矿磁相变温度的有效途 径. 该方法可用来设计室温以上磁电多功能材料.

综上所述,我们通过高压高温合成手段,首次 制备了新型的A, B位同时有序的四重钙钛矿CC-FOO. 结构精修表明该化合物具有立方晶系,空间 群为Pn-3, XAS确定了Cu²⁺/Fe³⁺/Os⁵⁺的电荷 组态;磁化率测量表明CCFOO具有高达580 K的 居里温度,低温下具有5 µB/f.u. 的饱和磁矩, DFT 计算和XMCD实验结果证实了Cu²⁺(↑) Fe³⁺(↑) Os⁵⁺(↓)的FIM耦合方式;电输运测量表明该体系 具有半导体的电导行为,光电流测试与DFT计算 证实其能隙约为1 eV的半导体性质.因而,CC-FOO提供了一个少有的既具有远高于RT的FIM 居里温度,又具有较大能隙的单相半导体材料,其 独特的高温FIM半导体性质在未来先进自旋电子 学器件中有潜在应用.

图 16 CCFOO 的第一性原理给出的能带结构以及局部的 DOS 结果

Fig. 16. First-principles numerical results for the band structures and partial DOS of CCFOO.

4 LaMn₃Ni₂Mn₂O₁₂中受A位磁性离 子调控的B位正交自旋有序结构

前面提到,在A, B位同时有序钙钛矿 $AA'_{3}B_{2}B'_{2}O_{12}$ 中(图1(d)),由于A'位、B位和B' 位三个原子位置可以同时容纳TM离子,因而除了存在A'-A', B/B'-B/B'磁交换作用外,还可能存在A'-B/B'位间的磁交换作用,从而可能形成复杂的磁有序.尽管在A'位为Cu²⁺的ACu₃B₄O₁₂钙钛矿中Cu-B间往往存在强的FM或AFM交换作用^[51,62],但是在大多数A'位为

 Mn^{3+} 的 $AMn_3B_4O_{12}$ 钙钛矿中, Mn-B间的磁交 换作用往往可以忽略, 以致于B位磁性离子与A'位 Mn^{3+} 离子可以单独形成自旋有序相变^[42,63]. 然而,最新研究表明,在A, B位同时有序钙钛矿 La $Mn_3Ni_2Mn_2O_{12}$ (LMNMO)中,由于A'位 Mn^{3+} 离子和B/B'位 Ni^{2+}/Mn^{4+} 离子存在较强的磁交 换作用,从而使得A'位 Mn^{3+} 离子可以调控B/B'位 Ni^{2+}/Mn^{4+} 离子的磁结构.这是第一次在A位 (与B位)有序钙钛矿结构中发现正交磁有序^[64].

LMNMO 可以在8 GPa, 1400 K的高压高温 条件下合成. 图17给出了LMNMO在RT下的粉 末XRD、高分辨选区电子衍射 (selected area electron diffraction, SAED)以及 300 K的NPD. 从 图17(a) SAED图样中明显的(111)超结构衍射 斑点以及图17(b) NPD中强的(111)超结构衍射 峰可以判定LMNMO中B位Ni和B'位Mn以岩盐 矿有序的形式排布. XRD和NPD的衍射结果可 以很好地用空间群为Pn-3的A, B位同时有序立 方钙钛矿AA'3B2B'2O12结构来精修. 其中A位 的La和A'位的Mn分别占据2a (0.25, 0.25, 0.25) 和 6d (0.25, 0.75, 0.75) 位置并形成1:3 有序; B 位的Ni和B'位的Mn 分别占据4b (0,0,0)和4c (0.5, 0.5, 0.5) 位置并形成1:1 岩盐矿有序; O 原子 占据24h (x, y, z) 的位置(图1(d)). 表3和表4给 出了精修结果. 表 3 + 2a 位 La, 6d 位 Mn 和 4c 位 Mn 以及24h位O的原子占据率接近100%,仅4b 位上的Ni被大约10%的Mn所取代.因而,LM-NMO样品满足很好的化学计量比.

为了进一步确定LMNMO的低温晶体结构, 分别在200,40和3 K进行了变温NPD.NPD精 修结果表明,LMNMO在温度降低至3 K时仍 然保持*Pn*-3空间群,晶体结构未发生变化 (见 表3).表4给出了各*A'*—O,*B/B'*—O键键长和 键角的精修结果.其中*B/B'*位的Ni—O—Mn 键角约为138.5°,表明LMNMO中NiO₆和MnO₆ 八面体存在严重的倾斜.BVS^[56,57]给出了 LaMn³⁺Ni²⁺Mn⁴⁺O₁₂的价态组合.从BVS计算 结果可以看出,LMNMO的*A'*位被Jahn-Teller 离 子Mn³⁺ (t³₂e¹_g)占据,*B*位和*B'*位分别被非Jahn-Teller 离子Ni²⁺(t⁶₂e²_g)和Mn⁴⁺(t³₂e⁰_g)占据.

值得注意的是,自从A,B位同时有序钙钛 矿结构AA'₃B₂B'₂O₁₂在2003年第一次被报道以 来^[55], 研究结果几乎全部集中在A'位为Cu²⁺的 ACu₃B₂B₂O₁₂ (B = Ga³⁺, Fe³⁺, Cr³⁺; B' = Sb⁵⁺, Ta⁵⁺, Nb⁵⁺, Ru⁵⁺, Re⁵⁺, Os⁵⁺)钙钛矿 结构中^[53,55,62,65-68], A'位为Mn³⁺的A, B位同 时有序钙钛矿 AMn₃B₂B₂O₁₂仅仅在NaMn₇O₁₂ (NaMn₃³⁺Mn₂⁴⁺Mn₂³⁺O₁₂)(空间群为I2/m)的低温 电荷有序相中被发现^[69],并且其B/B'位的Mn³⁺ 和Mn⁴⁺以非岩盐矿有序的形式存在. 因而, LM-NMO给出了第一个A'位为Mn³⁺的A, B位同时 有序AMn₃B₂B₂O₁₂型立方钙钛矿结构.

图 17 LMNMO (a) 在 RT 收集的 XRD 图 谱和 (b) 在 300 K 收集的 NPD 的图谱以及相应的 Rietveld 精修结果, 图中给出了观测值 (红色圆圈)、计算值 (黑线) 以及差值 (蓝 线); 上面的竖线表示允许的 Bragg 反射, (b) 图中下面的竖 线表示少量的 NiO 杂相 (< 1.2 wt%), (a) 图中的插图给出 了 RT 下沿着 [110] 晶带轴的选区电子衍射图案

Fig. 17. Rietveld refinements for (a) XRD pattern collected at RT and (b) NPD pattern at 300 K for LMNMO. The observed (red circles), calculated (black line), and difference (blue line) are shown. Allowed Bragg reflections are indicated by ticks (top). The lower ticks shown in panel (b) present the small amount of impurity phase NiO (< 1.2 wt%). The inset in panel (a) shows an SAED pattern along [110] zone axis taken at RT.

	温度 T/K					
	3	40	200	300	RT	
Space group	Pn-3	Pn-3	Pn-3	Pn-3	Pn-3	
$a/{ m \AA}$	7.35692(20)	7.35860(9)	7.36198(12)	7.36863(8)	7.37478(3)	
O_x	0.2590(3)	0.2583(2)	0.2583(2)	0.2592(2)	0.254(10)	
O_y	0.4288(4)	0.4271(3)	0.4269(2)	0.4275(3)	0.4340(5)	
O_z	0.5596(4)	0.5607(2)	0.5608(2)	0.5608(2)	0.5673(5)	
$G(\mathrm{Ni}_{4b})$	0.890	0.890	0.890(4)	0.912(6)	0.96(13)	
$G(Mn_{4b})$	0.110	0.110	0.110(4)	0.088(6)	0.08(11)	
$G(\mathrm{Ni}_{4c})$	0.014	0.014	0.014(4)	0.001(1)	0.03(11)	
$G(Mn_{4c})$	0.986	0.986	0.986(4)	0.999(1)	0.91(13)	
$G(\mathcal{O})$	1.0	1.0	1.0	1.04(2)	1.043(10)	
$M(\mathrm{Mn}_{6d})$	$2.94(5)~\mu_{\rm B}$	$1.60(4)~\mu_{\rm B}$	_	—		
$M(\mathrm{Ni}_{4b})$	$0.65(3)~\mu_{\rm B}$					
$M(\mathrm{Mn}_{4c})$	$0.44(3)~\mu_{\rm B}$		_		_	
$U_{\rm iso}({\rm La})/{\rm \AA}^2$	0.200	0.12(12)	0.30(11)	1.00(15)	0.014(6)	
$U_{\rm iso}({\rm Mn}_{6d})/{\rm \AA}^2$	0.200	1.5(1)	1.58(12)	1.80(17)	0.016(3)	
$U_{\rm iso}({\rm Ni}_{4b})/{\rm \AA}^2$	0.400	0.42(6)	0.38(7)	0.62(13)	0.017(7)	
$U_{\rm iso}({\rm Mn}_{4c})/{\rm \AA}^2$	0.200	0.2	0.2	0.2	0.009(3)	
$U_{\rm iso}({\rm O})/{\rm \AA^2}$	0.250	0.37(8)	0.43(10)	0.46(17)	0.014(5)	
χ^2	6.26	2.39	1.64	4.51	3.49	
$R_{ m wp}/\%$	7.98	6.13	5.03	6.88	12.49	
$R_{\mathrm{P}}/\%$	6.35	4.83	3.84	5.44	10.24	

表 3 由 NPD (3, 40, 200, 300 K) 和 XRD(RT) 通过 Rietveld 方法精修获得的 LMNMO 的结构参数 ^a Table 3. Structural parameters obtained from the Rietveld refinements of NPD (3, 40, 200, 300 K) and XRD (RT) data for LMNMO^a.

^a*Pn-3* (No. 201) 空间群, 原点采用方式 2, 其中各原子位置如下: La 2*a* (0.25, 0.25, 0.25), Mn 6*d* (0.25, 0.75, 0.75), Ni 4*b* (0, 0, 0), Mn 4*c* (0.5, 0.5, 0.5) 和O 24*h* (*x*, *y*, *z*). 其中, *G* 表示各原子位置的占据率; *M* 表示离子的自旋磁矩. O 原子的占据率通过对 300 K 的 NPD 衍射精修得到. 结果表明在 2 倍标准差之内, O 原子满足化学 计量比. 对于更低的温度, O 原子的占据率被固定为 1.

^aSpace group Pn-3 (No. 201), origin choice 2, where the atomic positions are La 2a (0.25, 0.25, 0.25), Mn 6d (0.25, 0.75, 0.75), Ni 4b (0, 0, 0), Mn 4c (0.5, 0.5, 0.5), and O 24h (x, y, z). G represents the site occupation factor; M represents the ionic spin moment. The site occupancy for O is refined for the 300 K NPD pattern, resulting in stoichiometric within two times the standard deviation. For the lower temperatures it is fixed to unity.

为了进一步验证 BVS 计算给出的 LMNMO 的价态组合,在 RT下进行了 XAS 的研究.如 图 18 (a) 所示,LMNMO 的 Ni- $L_{2,3}$ 吸收边的能量 与 PbNi²⁺O₃^[70]中二价 Ni²⁺- $L_{2,3}$ 能量重合,但是 比 Nd₂Li_{0.5}Ni³⁺_{0.5}O₄^[71,72]中的三价 Ni³⁺- $L_{2,3}$ 的能 量低 1 eV,表明 LMNMO 中 Ni 以 +2 价存在.并且,

LMNMO和PbNiO₃中Ni的多重态光谱结构十分 相似,表明这两个化合物存在相同的NiO₆八面 体配位.图18(b)给出了LMNMO中Mn- $L_{2,3}$ 吸收 边,同时给出了含有Mn³⁺O₄平面四边形配位的 A位有序钙钛矿YMn³⁺Al₄O₁₂(YMA)^[73]和含有 Mn⁴⁺O₆八面体配位的简单钙钛矿 SrMn⁴⁺O₃^[74] 的 Mn- $L_{2,3}$ 吸收边作为对比. 结果表明, Mn- $L_{2,3}$ 的峰位逐步向高能方向由 YMA 移动到 LM-NMO, 进而到 SrMnO₃. 表明这三个化合物中 Mn 的价态在逐步升高. 图 18 (b) 中点线给出了 YMA 和 SrMnO₃ 的 Mn- $L_{2,3}$ 吸收边以3:2的

比例简单叠加. 可以看出,叠加结果 $Mn-L_{2,3}$ 吸收边和LMNMO的 $Mn-L_{2,3}$ 吸收边能够很好 地重合,说明LMNMO中Mn的平均价态为+3.4. 从而,LMNMO的XAS证实了BVS计算给出的 La $Mn_3^{3+}Ni_2^{2+}Mn_2^{4+}O_{12}$ 价态组合.

表 4 从LMNMO的NPD的Rietveld精修结果中选定的键长、键角以及BVS计算结果^a Table 4. Selected bond lengths and angles and the BVS calculations for LMNMO obtained from the Rietveld refinements of NPD data^a.

	T/K			
	3	40	200	300
${\rm Mn}_{6d}$ —O/Å (\times 4)	1.909(1)	1.908(5)	1.908(4)	1.912(9)
$(\times 4)$	2.751(4)	2.755(1)	2.756(5)	2.756(1)
$(\times 4)$	3.296(3)	3.304(9)	3.306(2)	3.303(6)
$\rm Ni_{4b} - O/Å~(\times 6)$	2.028(3)	2.025(2)	2.026(7)	2.033(9)
Mn _{4c} —O/Å (\times 6)	1.905(5)	1.910(3)	1.911(4)	1.905(7)
$\mathrm{Mn}_{6d} \mathrm{-\!-\!O} \mathrm{-\!Mn}_{6d} / (^{\circ})$	102.7(4)	102.6(7)	102.6(8)	102.7(1)
$\mathrm{Mn}_{6d}\mathrm{-\!-\!O-\!Ni}_{4b}/(^\circ)$	107.9(7)	108.1(6)	108.1(8)	107.8(5)
$\mathrm{Mn}_{6d}\mathrm{-\!-\!O}\mathrm{-\!Mn}_{4c}/(^{\circ})$	113.2(6)	113.1(1)	113.1(5)	113.3(5)
$\mathrm{Ni}_{4b}\mathrm{-\!-}\mathrm{O}\mathrm{-\!-}\mathrm{Mn}_{4c}/(^{\circ})$	138.4(6)	138.4(1)	138.3(6)	138.4(9)
BVS (Mn_{6d})	+3.009(3)	+3.010(9)	+3.010(3)	+2.978(7)
BVS (Ni_{4b})	+2.181(8)	+2.200(1)	+2.191(2)	+2.149(1)
BVS (Mn_{4c})	+3.974(4)	+3.922(1)	+3.910(5)	+3.971(2)

^aBVS值 (V_i) 是利用公式 $V_i = \sum_j S_{ij}$, 和 $S_{ij} = \exp[(r - r_{ij})/0.37]$ 计算得到. 在LMNMO中, 对于 Mn_{6d}, Mn_{4c} 和 Ni_{4b}, r 的取值分别为 1.760, 1.753 和 1.654 Å. 对于 Mn_{6d}, 计算考虑了 12 配位的氧原子. 对于 Ni_{4b} 和 Mn_{4c}, 考虑了六配位的氧原子

^aThe BVS values (V_i) are calculated using the formula $V_i = \sum_j S_{ij}$, and $S_{ij} = \exp[(r - r_{ij})/0.37]$. In LMNMO, r = 1.760 Å for Mn_{6d}, 1.753 Å for Mn_{4c} and 1.654 Å for Ni_{4b} For the Mn_{6d}, 12-coordinated oxygen atoms are used. For the Ni_{4b} and Mn_{4c}, 6-coordinated oxygen atoms are used.

图 18 (a) LMNMO(红色) 以及参考样品 PbNi²⁺O₃ (黑色), Nd₂Li_{0.5}Ni³⁺_{0.5}O₄ (蓝色) 的 Ni- $L_{2,3}$ 吸收边的归一化 XAS; (b) LMNMO (红色) 以及参考样品 YMn³⁺₃Al₄O₁₂(橙色), SrMn⁴⁺O₃(蓝色) 的 Mn- $L_{2,3}$ 吸收边的归一化 XAS, 其中, 点 线给出了 YMn₃Al₄O₁₂ 和 SrMnO₃ 的 Mn- $L_{2,3}$ 吸收边以3:2 的比例简单叠加

Fig. 18. Normalized XAS of (a) Ni- $L_{2,3}$ edges of LMNMO (red) and the reference PbNi²⁺O₃ (black), Nd₂Li_{0.5}Ni³⁺_{0.5}O₄ (blue) and (b) Mn- $L_{2,3}$ edges of LMNMO (red), and the references YMn³⁺₃Al₄O₁₂ (orange) and SrMn⁴⁺O₃ (blue). The dotted line shows a simple superposition of YMn₃Al₄O₁₂ and SrMnO₃ with a 3 : 2 ratio.

由于LMNMO中三个不同的原子位置(即 A', B和B'位)同时被TM离子占据,因此可能产 生新奇的磁性. 图19(a)给出了不同磁场下LM-NMO的磁化率曲线. 直观上看, 磁化率曲线仅仅 在低温下经历了一个类似FM的转变.在0.01T的 较小外磁场下,磁化率的ZFC和FC曲线在磁转变 温度之下发生了分离. 然而, 当用1 T 的较大外磁 场来克服磁畴壁能后, ZFC和FC曲线在低温下趋 于重合. 从图19(a)的插图可以看出,在0.01 T磁 场下,磁化率曲线倒数的二阶微分存在两个明显的 极值点,表明可能存在两个磁相变.为了进一步证 实这两个磁相变的存在,分别测量了0T和1T下 的比热. 如图19(b)所示, 零场下比热曲线分别在 $T_{\rm N} \sim 46 \, {\rm K} \, {\rm m} \, T_{\rm C} \sim 34 \, {\rm K}$ 处出现两个明显的 λ -型 反常. 当外加1 T 磁场时, T_N 基本上保持不变, 而 $T_{\rm C}$ 明显向高温移动. 基于这些特征, 可以得出如下 结论: LMNMO在46 K和34 K分别经历了一个长 程AFM 相变和一个长程 FM 相变.

不同温度下的磁化曲线进一步给出LMNMO 中存在两个连续的磁相变的证据.如图19(c)所示, 在T_N之上,线性的磁化行为表明材料处于PM相. 虽然在 T_N 和 T_C 之间没有出现典型的磁滞回线,然 而40 K磁化曲线的线性外延给出了一个非零的净 磁矩. 由此可以推断, LMNMO在 T_N 和 T_C 之间存 在短程 FM 耦合. 在 $T_{\rm C}$ 之下, 出现了明显的磁滞回 线,表明类FM长程序的形成.2K的磁化曲线在高 达7T的磁场下仍然没有饱和,说明LMNMO的基 态同时存在FM和AFM 磁性交换作用. 值得注意 的是,当用线性外延扣除2K下磁化曲线中AFM 的贡献后,得到了高达约6.6 μ_B/f.u. 的饱和磁矩. 在 $AMn_3B_4O_{12}$ 家族中, $A' 位 Mn^{3+}$ 往往引入一个 独立的AFM有序^[42,63], 而两个近邻的Ni²⁺ (具有 半满填充的e² 轨道)和Mn⁴⁺(具有空的e⁰ 轨道)往 往产生FM交换作用^[75,76].因而可以猜测,LM-NMO中类FM转变来自B/B'位Ni²⁺/Mn⁴⁺子晶 格之间的磁交换作用. 在局域电子模型下, 绝缘 体LMNMO中FM耦合平行排列的Ni²⁺和Mn⁴⁺ 将给出10 μ_B/f.u. 的饱和磁矩. 从而, 实验上观察 到的约6.6 μ_B饱和磁矩表明LMNMO可能存在一 个非共线的FM 自旋排列. 这个假设将被后面的 NPD 所证实. 此外, 在 0.01 T 磁场下, ZFC 和 FC 曲线仅在T_C以下而非T_N以下发生分离,同样支持 B/B'位Ni²⁺/Mn⁴⁺非共线FM磁结构的假设.

图 19 (a) 0.01 T和1 T磁场下磁化率随温度的变化, 插 图给出了 0.01 T磁场下磁化率倒数的二阶微分; (b) 零场 和1 T磁场下比热随温度的变化; (c) 不同温度下测得的 磁化强度

Fig. 19. (a) Temperature dependence of magnetic susceptibility measured at 0.01 and 1 T, the insert shows the second derivative of the inverse susceptibility at 0.01 T; (b) temperature dependence of specific heat measured at zero field and 1 T; (c) magnetization measured at various temperatures.

为了揭示LMNMO低温下复杂的磁性,我们 对变温NPD进行了详细的磁空间群理论的分析 和精修 (图 20). 在图 20 (a)中,200 K的NPD和 300 K的NPD没有明显的区别. 然而在 T_N 之下 40 K的衍射谱中出现了如(100)等来源于磁有序 的衍射峰 (图 20 (b)). 因而,用40 K的NPD结果来 研究 T_N 和 T_C 之间的磁结构. 分析表明,该温度下 表征磁结构的传播矢量k = 0,因此LMNMO的晶

图 20 LMNMO 分别在 (a) 200, (b) 40 和 (c) 3 K 下采 集的 NPD 的 Rietveld 精修结果,图中给出了观测值 (红 色圆)、计算值 (黑线) 以及差值 (蓝线),黑色、红色和蓝 色竖线记号分别对应于允许的原子实 Bragg 衍射峰、磁 Bragg 衍射峰以及 NiO 杂相峰 (< 1.2 wt%)

Fig. 20. Rietveld refinements for the NPD patterns of LMNMO collected at (a) 200, (b) 40, and (c) 3 K. The observed (red circles), calculated (black line), and difference (blue line) are shown. The black, red and blue ticks correspond to the allowed nuclear Bragg peaks, magnetic Bragg reflections and the impurity phase NiO (< 1.2 wt%), respectively.

胞和磁胞的大小一致. NPD精修结果表明,在 40 K时,仅仅A'位的Mn³⁺离子形成了G-型AFM 有序,即每个Mn³⁺离子和周围最近邻的Mn³⁺离 子形成AFM排列(图22(a)).同样,LMCO^[41]和 YMA^[77] A'位的Mn³⁺具有类似的G-型AFM 结 构.尽管LMNMO 3 K的NPD (图20(c))和40 K 的NPD相比,除了磁衍射峰(如(100),(210)等)的 强度有所增加外,没有其他明显的改变.然而,磁 化率和比热测量结果表明,LMNMO在 $T_{\rm C} \sim 34$ K 处存在一个类FM相变.对比归一化的(100)和 (111) 衍射峰可以看出,这两个峰的强度在 T_N 处 急剧增加,并且在 T_C 处发生分离(图21).这些 特征同样可以表明上述两个磁相变的存在.对 3 K的 NPD 精修表明,该温度下 $A' ext{ d} Mn^{3+}$ 仍然 保持和40 K时同样的 G-型 AFM 结构;此外, $B ext{ d} Mn^{4+}$ 形成了如图 22 (b) 所示的正交 磁结构,该磁结构具有一个沿着 a 轴的 FM 分量. 上述磁结构可以很好地解释 LMNMO 的磁化行 为.因此,在 T_C 之下, LMNMO 总的磁结构由 $A' ext{ d} Mn^{3+}$ 的 G-型 AFM 结构和 $B/B' ext{ d} Ni^{2+}/Mn^{4+}$ 的 正交磁结构共同组成(图 22 (c)).在这个自旋模型 中, $B/B' ext{ d} Ni^{2+}/Mn^{4+}$ 正交磁结构的理论净磁矩 为7.07 $\mu_B/f.u.$,接近实验上2 K磁化曲线给出的 6.6 $\mu_B/f.u.$,表明该模型的正确性.同样,沿着b轴 和c轴分别存在两个等价磁结构模型.

图 21 归一化的 (100) 和 (111) NPD 峰的强度随温度的 变化,两条曲线在 T_N 处显著上升,并且在 T_C 处趋向于彼 此分开

Fig. 21. Normalized neutron diffraction intensity as a function of temperature for (100) and (111) peaks. These two curves sharply increase at $T_{\rm N}$ and then tend to separate for each other below $T_{\rm C}$.

值得注意的是,3 K NPD精修结果给出的 A'位Mn³⁺(S = 2), B位Ni²⁺ (S = 1)和B'位 Mn⁴⁺ (S = 3/2)的自旋磁矩分别为2.94(8) μ_B , 0.65(3) μ_B 和 0.44(3) μ_B . 这些磁矩实验值(特 別是B位Ni²⁺和B'位Mn⁴⁺的值)远远低于仅 考虑自旋分量时离子磁矩的理论值. 这个 结果可以用B/B'位上轻微的原子无序以及 该自旋体系中强的自旋阻挫来解释. 此外, LMNMO中引起类FM有序的Ni²⁺—O—Mn⁴⁺交 换路径的键角不符合A₂NiMnO₆家族中基于 Ni²⁺—O—Mn⁴⁺键角的磁性演变规律. 如图23, LMNMO中Ni²⁺—O—Mn⁴⁺的键角(~ 138.5°)落 在了 A_2 NiMnO₆ (A = Sc, In, Y, Bi 或者稀土元 素)^[76,78-85]家族中AFM 对应的键角区间. 这个 反常表明LMNMO中A'位Mn³⁺可能在B/B'位 Ni²⁺/Mn⁴⁺ 正交磁结构的形成中起着重要的作用.

ture of the A'-site Mn^{3+} (gray), (b) the orthogonally ordered spin structure composed of the *B*-site Ni^{2+} (red) and the *B'*-site Mn^{4+} (blue), (c) the total spin structure composed of the A'-, *B*- and *B'*-site magnetic ions. For clarity, O and La are omitted in the structures.

为了从根本上理解LMNMO中不同原子位置 上TM离子Mn³⁺,Ni²⁺和Mn⁴⁺之间特定的自旋 交换作用,利用3KNPD给出的晶体结构参数进 行了DFT计算.图24(a)给出了LMNMO中8条 最重要的磁交换路径.其中, J_i^{eff} (i = 1-8)分别对 应于不同路径的有效交换积分理论值(其中正值代 表FM交换;负值代表AFM交换).从计算结果可 以看出,对于A'位平面配位的Mn³⁺,最近邻(NN) J_1^{eff} 、次近邻(NNN) J_2^{eff} 和第三近邻(TNN) J_3^{eff} 都 支持AFM交换作用.相反,对于B/B'位八面体 配位的Ni²⁺/Mn⁴⁺而言,NN $B(Ni^{2+})-B'$ (Mn⁴⁺)-B'(Mn⁴⁺) J_6^{eff} 都表现为FM交换作用.这些计算 结果与磁性测量以及NPD给出的磁结构结果一 致. 然而,不同于LMCO (其中A'位 Mn^{3+} 和B位 Cr³⁺之间的交换作用可以忽略)的是,LMNMO 表现出强的 A'(Mn³⁺)-B(Ni²⁺) J₇^{eff} 和 A'(Mn³⁺)-B' (Mn⁴⁺) J_8^{eff} 的 A'-B/B' 位间的交换作用. 并且, 交换积分 J_{2}^{eff} 和 J_{8}^{eff} 在量级上与 NN 或 NNN 的 J_{1}^{eff} 和 J_4^{eff} - J_6^{eff} 相当,从而强烈表明,LMNMO中 A' 位 Mn^{3+} 在B/B'位 Ni^{2+}/Mn^{4+} 正交磁结构的形成起 着重要的作用.此外,图24(b)中DOS计算结果给 出了一个约1.5 eV的能隙, 这与共顶点连接的高 自旋的Ni²⁺O₆和 Mn⁴⁺O₆八面体所期望的结果 一致. 此外,在LMNMO中, A'位Mn³⁺, B位Ni²⁺ 和 B' 位 Mn⁴⁺ 的 DOS 存在很大的重叠, 这也帮助 解释了A'位和B/B'位离子之间存在强的磁交换 作用的原因. 值得注意的是, LMNMO中Mn³⁺, Ni^{2+} 和 Mn^{4+} 之间量级相当的交换作用 J_{4}^{eff} (FM), $J_7^{\text{eff}}(\text{AFM}) 和 J_8^{\text{eff}}(\text{FM}) 可以形成强的几何磁阻挫$ (图 24 (a)). 其中 FM 和 AFM 交换作用的相互竞争 可能是导致LMNMO中B/B'位正交磁结构形成 的主要原因^[86,87].此外,LMNMO磁结构中强的 磁阻挫最有可能解释NPD观测到的磁有序结构中 小的自旋磁矩,即由于磁阻挫的存在抑制了磁长程 有序的完全形成.这种情况在烧绿石结构中普遍 存在[88].

图 23 A_2 NiMnO₆ 家族以及 LMNMO 的磁有序温度随 平均的 Ni—O—Mn 键角的变化,其中, T_N 表示 AFM 奈 尔温度 (红色菱方); T_C 代表 FM 居里温度 (黑色圆); 蓝线 起到对视线的引导作用

Fig. 23. Magnetic ordering temperature as a function of the average Ni—O—Mn bond angle in A_2 NiMnO₆ family and LMNMO. T_N , the AFM Néel temperature (red diamonds); T_C , the FM Curie temperature (black circles). The blue line is a guide for the eyes.

图 24 (a) $A' \acute{\mathrm{ch}} \mathrm{Mn^{3+}}$ (灰色), $B \acute{\mathrm{ch}} \mathrm{Ni^{2+}}$ (红色) 和 $B' \acute{\mathrm{ch}} \mathrm{Mn^{4+}}$ (蓝色) 离子之间磁交换路径以及磁阻挫模型示 意图, 图中给出了理论计算得到的磁交换积分常数; (b) 计算得到的总的以及原子分辨的 DOS Fig. 24. (a) Schematic view of the magnetic exchange pathways and magnetic frustration model among the A'-site $\mathrm{Mn^{3+}}$ (gray), B-site $\mathrm{Ni^{2+}}$ (red) and B'-site $\mathrm{Mn^{4+}}$ (blue) ions with the exchange constants determined from the theoretical calculations; (b) total and atom-resolved DOS from calculations.

综上所述,我们利用高压高温实验条 件首次获得了A, B位同时有序钙钛矿材料 La $Mn_3^{3+}Ni_2^{2+}Mn_2^{4+}O_{12}$.该氧化物属于立方Pn-3 空间群.由于LMNMO中A'位、B位和B'位之间 存在复杂的磁交换作用,导致A'位 Mn^{3+} 和B/B'位 Ni^{2+}/Mn^{4+} 分别在 $T_N \sim 46$ K和 $T_C \sim 34$ K 形成了G-型AFM和正交磁有序结构.DFT计算 表明A'位和B/B'位之间存在强的磁阻挫,从而 给出了LMNMO中正交性磁结构形成的原因.从 而,LMNMO成为了第一个由A'位磁性离子调控 的B/B'位具有正交磁有序结构的四重钙钛矿.

5 结 论

总之, 压力作为一个平行于温度与化学组分的决定物质热力学状态的重要参数, 高压制备也已成为新型关联电子体系的重要源泉. 由于钙钛矿灵活多变的电荷组态与晶体构型, 高温高压特别适合合成 *ABO*₃ 钙钛矿以及 *A*位与/或 *B*位有序钙钛矿. 在有序钙钛矿中, 多个原子位置容纳过渡金属离子, 因此除了传统的 *B*位相互作用外, 也存在 *A*位相互作用以及 *A*-*B*位间的相互作用, 由此导致众多新颖有趣物理现象与功能属性的出现. 本文中论及的 *A*位有序钙钛矿 LaMn₃Cr₄O₁₂ 以及 *A*, *B*位同时有序钙钛矿 CaCu₃Fe₂Os₂O₁₂ 与

LaMn₃Ni₂Mn₂O₁₂均是高温高压极端条件下的产 物. 在不同温度下, LMCO始终保持立方钙钛矿结 构,空间群为Im-3. 虽然这种具有反演对称中心的 物质在晶体结构上不支持铁电极化, 然而由A'位 Mn³⁺与B位Cr³⁺磁性离子共同组成的特殊自旋 结构可以打破空间反演对称,从而诱导电极化.不 同于传统的铁电相变, LMCO的电极化来自于纯电 子的贡献,具有较大的磁电耦合效应.LMCO是第 一个被发现的具有立方晶系的钙钛矿多铁性材料, 为新型多铁材料的探索以及多铁机理的研究提供 了范例. 半导体材料与(亚)铁磁材料是研究与应用 非常广泛的两类材料体系,然而如何把半导体与铁 磁这两种属性集成到一个单相材料体系中,却面临 巨大的挑战. 虽然通过磁性离子掺杂可获得很多稀 磁半导体,但其铁磁居里温度往往较低,不利于实 际应用. 我们把磁性离子 Cu²⁺ 引入到钙钛矿的 A 位,首次在高压下获得了 CCFOO. Cu²⁺ 离子的引 入在原有 Fe-Os 磁相互作用基础上增加了额外较强 的Cu-Os与Cu-Fe磁相互作用,因此CCFOO具有 远高于室温的亚铁磁居里温度(580 K).同时,该体 系展示了半导体电输运行为,室温能隙约1 eV. 可 见, CCFOO 是一个少有的新型单相高温亚铁磁半 导体,为未来先进多功能自旋电子学器件的开发提 供了重要候选材料. 以往研究表明, A'位由 Mn³⁺ 组成的有序钙钛矿, A' 位 Mn³⁺ 子晶格和 B 位磁性

子晶格往往形成两个独立的自旋有序相,很少存在 A'-B位间的磁相互作用.然而,在我们获得的多重 有序钙钛矿相LMNM中,除了发现两个磁相变外, 也存在较强的A'-B磁交换相互作用,这种新颖的 相互作用导致了B位罕见的正交磁结构的出现,使 整个体系表现出类铁磁性质.因此,LMNM成为第 一个A'位由Mn³⁺组成的且具有铁磁行为的有序 钙钛矿.

众所周知,利用常规条件已越来越难获得新材料,但高压下新材料的发现正不断涌现.而且,高 压有利于稳定某些特殊晶体结构以及一些反常化 合价态,这些新的体系往往具有新奇的物理性质与 机理.高压作为一门材料、物理、化学等交叉的学 科,尚存在巨大的未知空间等待发掘.因此,我们 希望更多的年轻学者加入到这个研究领域,共同探 索与开发奇妙的高压世界.

感谢中国科学院物理研究所孙阳研究员、杨义峰研究员、柴一晟副研究员以及东南大学董帅教授的合作与有益 讨论.

参考文献

- [1] Fu H X, Cohen R E 2000 Nature 403 281
- [2] Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001 Jpn. J. Appl. Phys. 40 5999
- [3] Cox D E, Noheda B, Shirane G, Uesu Y, Fujishiro K, Yamada Y 2001 Appl. Phys. Lett. 79 400
- [4] Panda P K 2009 J. Mater. Sci. 44 5049
- [5] Cohen R E 1992 Nature 358 136
- [6] Bersuker I B 1966 Phys. Lett. 20 589
- [7] Goto T, Kimura T, Lawes G, Ramirez A P, Tokura Y 2004 Phys. Rev. Lett. 92 257201
- $[8]\;$ Bednorz J G, Müller K A 1988Rev. Mod. Phys. 60 585
- [9] Xiao G, Cieplak M Z, Gavrin A, Streitz F H, Bakhshai A, Chien C L 1988 *Phys. Rev. Lett.* **60** 1446
- [10] Cava R J, Batlogg B, Krajewski J J, Farrow R, Rupp Jr L W, White A E, Short K, Peck W F, Kometani T 1988 *Nature* 332 814
- [11] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532
- [12] Helmolt R V, Wecker J, Holzapfel B, Schultz L, Samwer K 1993 Phys. Rev. Lett. **71** 2331
- [13] Moritomo Y, Asamitsu A, Kuwahara H, Tokura Y 1996 *Nature* 380 141
- [14] Tokura Y, Tomioka Y, Kuwahara H, Asamitsu A, Moritomo Y, Kasai M 1996 J. Appl. Phys. 79 5288
- [15] Tokura Y 2006 Rep. Prog. Phys. 69 797
- [16] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

- [17] Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759
- [18] Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21
- [19] Spaldin N A, Cheong S K, Ramesh R 2010 Phys. Today63 38
- [20] Mackenzie A P, Julian S R, Diver A J, McMullan G J, Ray M P, Lonzarich G G, Maeno Y, Nishizaki S, Fujita T 1996 Phys. Rev. Lett. **76** 3786
- [21] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103
- [22] Calder S, Garlea V O, McMorrow D F, Lumsden M D, Stone M B, Lang J C, Kim J W, Schlueter J A, Shi Y G, Yamaura K, Sun Y S, Tsujimoto Y, Christianson A D 2012 Phys. Rev. Lett. 108 257209
- [23] Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105
- [24] Yan B H, Jansen M, Felser C 2013 Nat. Phys. 9 709
- [25] Chen Y G, Lu Y M, Kee H Y 2015 Nat. Commun. 6 6593
- [26] Kobayashi K I, Kimura T, Sawada H, Terakura K, Tokura Y 1998 Nature 395 677
- [27] Krockenberger Y, Mogare K, Reehuis M, Tovar M, Jansen M, Vaitheeswaran G, Kanchana V, Bultmark F, Delin A, Wilhelm F, Rogalev A, Winkler A, Alff L 2007 *Phys. Rev. B* **75** 020404
- [28] Shimakawa Y, Shiraki H, Saito T 2008 J. Phys. Soc. Jpn. 77 113702
- [29] Ramirez A P, Subramanian M A, Gardel M, Blumberg
 G, Li D, Vogt T, Shapiro S M 2000 Solid State Commun.
 115 217
- [30] Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S, Shimakawa Y 2009 Nature 458 60
- [31] Long Y W, Kawakami T, Chen W T, Saito T, Watanuki T, Nakakura Y, Liu Q Q, Jin C Q, Shimakawa Y 2012 *Chem. Mater.* 24 2235
- [32] Long Y W, Saito T, Tohyama T, Oka K, Azuma M, Shimakawa Y 2009 Inorg. Chem. 48 8489
- [33] Long Y W, Shimakawa Y 2010 New J. Phys. 12 063029
- [34] Yamada I, Etani H, Tsuchida K, Marukawa S, Hayashi N, Kawakami T, Mizumaki M, Ohgushi K, KusanoY, Kim J, Tsuji N, Takahashi R, Nishiyama N, Inoue T, Irifune T and Takano M 2013 Inorg. Chem. 52 13751
- [35] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719
- [36] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55
- [37] Katsura H, Nagaosa N, Balatsky V 2005 *Phys. Rev. Lett.* 95 057205
- [38] Sergienko I A, Dagotto E 2006 Phys. Rev. B 73 094434
- [39] Sergienko I A, Sen C, Dagotto E 2006 Phys. Rev. Lett.
 97 227204
- [40] Mostovoy M 2006 Phys. Rev. Lett. 96 067601
- [41] Wang X, Chai Y S, Zhou L, Cao H B, Cruz C D, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q, Long Y W 2015 *Phys. Rev. Lett.* **115** 087601

- [42] Long Y W, Saito T, Mizumaki M, Agui A, Shimakawa Y 2009 J. Am. Chem. Soc. 131 16244
- [43] Tokura Y, Seki S, Naoto N 2014 Rep. Prog. Phys. 77 076501
- [44] ArimaT 2007 J. Phys. Soc. Jpn. **76** 073702
- [45] Iyama A, Kimura T 2013 Phys. Rev. B 87 180408
- [46] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
- [47] Awschalom D D, Flatte M E, Samarth N 2002 Sci. Am. 286 66
- [48] Dietl T 2010 Nat. Mater. 9 965
- [49] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
- [50] Zeng Z, Greenblatt M, Subramanian M A, Croft M 1999 Phys. Rev. Lett. 82 3164
- [51] Alonso J A, Sánchez-Benítez J, de Andrés A, Martínez-Lope M J, Casais M T, Martínez J L 2003 Appl. Phys. Lett. 83 2623
- [52] Takata K, Yamada I, Azuma M, Takano M, Shimakawa Y 2007 Phys. Rev. B 76 024429
- [53] Deng H S, Liu M, Dai J H, Hu Z W, Kuo C Y, Yin Y Y, Yang J Y, Wang X, Zhao Q, Xu Y J, Fu Z M, Cai J W, Guo H Z, Jin K J, Pi T W, Soo Y L, Zhou G H, Cheng J G, Chen K, Ohresser P, Yang Y F, Jin C Q, Tjeng L H, Long Y W 2016 *Phys. Rev. B* 94 024414
- [54] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 2002 WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Technische Universitat Wien)
- [55] Byeon S H, Lufaso M W, Parise J B 2003 Chem. Mater. 15 3798
- [56] Brown I D, Altermatt D 1985 Acta Cryst. B 41 244
- [57] Brese N E, O'Keeffe M 1991 Acta Cryst. B 47 192
- [58] Hollmann N, Hu Z, Maignan A, Gunther A, Jang L Y, Tanaka A, Lin H J, Chen C T, Thalmeier P, Tjeng L H 2013 Phys. Rev. B 87 155122
- [59] Huang M J, Deng G, Chin Y Y, Hu Z, Cheng J G, Chou F C, Conder K, Zhou J S, Pi T W, Goodenough J B, Lin H J, Chen C T 2013 *Phys. Rev. B* 88 014520
- [60] Haupricht T, Sutarto R, Haverkort M W, Ott H, Tanaka A, Hsieh H H, Lin H J, Chen C T, Hu Z, Tjeng L H 2010 *Phys. Rev. B* 82 035120
- [61] Paul A K, Jansen M, Yan B, Felser C, Reehuis M, Abdala P M 2013 Inorg. Chem. 52 6713
- [62] Senn M S, Chen W T, Saito T, García-Martín S, Attfield J P, Shimakawa Y 2014 Chem. Mater. 26 4832
- [63] Prodi A, Gilioli E, Cabassi R, Bolzoni F, Licci F, Huang Q Z, Lynn J W, Affronte M, Gauzzi A, Marezio M 2009 *Phys. Rev. B* **79** 085105
- [64] Yin Y Y, Liu M, Dai J H, Wang X, Zhou L, Cao H B, Cruz C D, Chen C T, Xu Y J, Shen X, Yu R C, Alonso J A, Muñoz A, Yang Y F, Jin C Q, Hu Z W, Long Y W 2016 Chem. Mater. 28 8988
- [65] Byeon S H, Lee S S, Parise J B, Woodward P M, Hur N H 2005 Chem. Mater. 17 3552

- [66] Byeon S H, Lee S S, Parise J B, Woodward P M 2006 Chem. Mater. 18 3873
- [67] Chen W T, Mizumaki M, Saito T, Shimakawa Y 2013 Dalton Trans. 42 10116
- [68] Chen W T, Mizumaki M, Seki H, Senn M S, Saito T, Kan D, Attfield J P, Shimakawa Y 2014 Nat. Commun. 5 4909
- [69] Prodi A, Gilioli E, Gauzzi A, Lolzoni F, Marezio M, Bolzon F, Huang Q, Ssntoro A, Lynn J W 2004 Nat. Mater.
 3 48
- [70] Inaguma Y, Tanaka K, Tsuchiya T, Mori D, Katsumata T, Ohba T, Hiraki K, Takahashi T, Saitoh H 2011 J. Am. Chem. Soc. 133 16920
- [71] Hu Z, Mazumdar C, Kaindl G, de Groot F M F, Warda S A, Reinen D 1998 Chem. Phys. Lett. 297 321
- [72] Hu Z, Golden M S, Fink J, Kaindl G, Warda S A, Reinen D, Mahadevan P, Sarma D D 2000 Phys. Rev. B 61 3739
- [73] Tohyama T, Saito T, Mizumaki M, Agui A, Shimakawa Y 2010 Inorg. Chem. 49 2492
- [74] Kim D H, Lee E, Kim H W, Kolesnik S, Dabrowski B, Kang C J, Kim M, Min B I, Lee H K, Kim J Y, Kang J S 2015 Phys. Rev. B 91 075113
- [75] Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889
- [76] Rogado N S, Li J, Sleight A W, Subramanian M A 2005 Adv. Mater. 17 2225
- [77] Toyoda M, Saito T, Yamauchi K, Shimakawa Y, Oguchi T 2015 Phys. Rev. B 92 014420
- [78] Yi W, Princep A J, Guo Y F, Johnson R D, Khalyavin D, Manuel P, Senyshyn A, Presniakov I A, Sobolev A V, Matsushita Y, Tanaka M, Belik A A, Boothroyd A T 2015 *Inorg. Chem.* 54 8012
- [79] Wei Y, Liang Q F, Matsushita Y, Tanaka M, Belik A A 2013 Inorg. Chem. 52 14108
- [80] Asai K, Fujiyoshi K, Nishimori N, Satoh Y, Kobayashi Y, Mizoguchi M 1998 J. Phys. Soc. Jpn. 67 4218
- [81] Booth R J, Fillman R, Whitaker H, Nag A, Tiwari R M, Ramanujachary K V, Gopalakrishnan J, Lofland S E 2009 Mater. Res. Bull. 44 1559
- [82] Manna K, Bera A K, Jain M, Elizabeth S, Yusuf S M, Anil Kumar P 2015 Phys. Rev. B 91 224420
- [83] Retuerto M, Muñoz Á, Martínez-Lope M J, Alonso J A, Mompeán F J, Fernández-Díaz M T, Sánchez-Benítez J 2015 Inorg. Chem. 54 10890
- [84] Nhalil H, Nair H S, Kumar C M N, Strydom A M, Elizabeth S 2015 Phys. Rev. B 92 214426
- [85] Sánchez-Benítez J, Martínez-Lope M J, Alonso J A, García-Muñoz J L 2011 J. Phys.: Condens. Matter 23 226001
- [86] Kajimoto R, Mochizuki H, Yoshizawa H, Shintani H, Kimura T, Tokura Y 2005 J. Phys. Soc. Jpn. 74 2430
- [87] Saito T, Toyoda M, Ritter C, Zhang S B, Oguchi T, Attfield J P, Shimakawa Y 2014 Phys. Rev. B 90 214405
- [88] Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

SPECIAL TOPIC — Recent advances in the structures and properties of materials under high-pressure

High-pressure synthesis and special physical properties of several ordered perovskite structures^{*}

Yin Yun-Yu¹⁾ Wang Xiao¹⁾ Deng Hong-Shan¹⁾ Zhou Long¹⁾ Dai Jian-Hong¹⁾ Long You-Wen^{1)2)†}

1) (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences,

Beijing 100190, China)

2) (Collaborative Innovation Center of Quantum Matter, Beijing 100190, China)
(Received 17 January 2017; revised manuscript received 18 January 2017)

Abstract

Strongly correlated electronic systems with ABO_3 perovskite and/or perovskite-like structures have received much attention. High pressure is an effective method to prepare perovskites, in particular A-site and/or B-site ordered perovskites. In these ordered perovskites, both A and B sites can accommodate transition-metal ions, giving rising to multiple magnetic and electrical interactions between A-A, B-B, and A-B sites. The presence of these new interactions can induce a wide variety of interesting physical properties. In this review paper, we will introduce an A-site ordered perovskite with chemical formula $AA'_{3}B_{4}O_{12}$ and two A- and B-site ordered perovskites with chemical formula $AA'_{3}B_{2}B'_{2}O_{12}$. All of these compounds can be synthesized only under high pressure. In the A-site ordered LaMn₃Cr₄O₁₂ with cubic perovskite structure, magnetoelectric multiferroicity with new multiferroic mechanism is found to occur. This is the first observation of multiferroicity appearing in cubic perovskite, thereby opening the way to exploring new multiferroic materials and mechanisms. In the A- and B-site ordered perovskite $CaCu_3Fe_2Os_2O_{12}$, a high ferrimagnetic Curie temperature is observed to be around 580 K. Moreover, this compound exhibits semiconducting conductivity with an energy band gap of about 1 eV. The $CaCu_3Fe_2Os_2O_{12}$ thus provides a rare single-phase ferrimagnetic semiconductor with high spin ordering temperature well above room temperature as well as considerable energy band gap. Moreover, theoretical calculations point out that the introducing of A'-site Cu^{2+} magnetic ions can generate strong Cu-Fe and Cu-Os spin interactions. As a result, this A- and B-site ordered perovskite has a much higher Curie temperature than that of the B-site only ordered perovskite Ca_2FeOsO_6 (~320 K). In addition, we also for the first time prepare another A- and B-site ordered perovskite LaMn₃Ni₂Mn₂O₁₂. In the reported ordered perovskites with Mn³⁺ at the A' site, the A'-B intersite spin interaction is usually negligible. In our LaMn₃Ni₂Mn₂O₁₂, however, there exists the considerable A'-B interaction, which is responsible for the rare formation of B-site orthogonal spin structure with net ferromagnetic moment.

Keywords: high-pressure synthesis, ordered perovskite, multiferroicity, spin ordering PACS: 02.10.Yn, 33.15.Vb, 98.52.Cf, 78.47.dc DOI: 10.7498/aps.66.030201

^{*} Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the National Natural Science Foundation of China (Grant No. 11574378), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300).