Supplementary File for

Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO₃

Xubin Ye^{1,2,#}, Jianfa Zhao^{1,2,#}, Hena Das^{3,4,#}, Denis Sheptyakov⁵, Junye Yang⁵, Yuki Sakai^{6,3}, Hajime Hojo⁷, Zhehong Liu^{1,2}, Long Zhou^{1,2}, Lipeng Cao¹, Takumi Nishikubo³, Shogo Wakazaki³, Cheng Dong^{1,2}, Xiao Wang⁸, Zhiwei Hu⁸, Hong-Ji Lin⁹, Chien-Te Chen⁹, Christoph Sahle¹⁰, Anna Efiminko¹⁰, Huibo Cao¹¹, Stuart Calder¹¹, Ko Mibu¹², Michel Kenzelmann⁵, Liu Hao Tjeng⁸, Runze Yu^{*,1,2,4}, Masaki Azuma^{*,3,6}, Changqing Jin^{1,2,13}, and Youwen Long^{*,1,2,13}

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
³Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori,
Yokohama 226-8503, Japan

⁴Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan ⁵Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen, Switzerland

⁶Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan

⁷Department of Advanced Materials and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816–8580, Japan ⁸Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany

⁹National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan,

R.O.C

¹⁰European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France

¹¹Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,

United States

¹²Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

¹³Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

[#]These authors contribute equally to this work.

*Corresponding email: ywlong@iphy.ac.cn (Y.W.L.); yurz@iphy.ac.cn (R.Z.Y.); and mazuma@msl.titech.ac.jp (M.A.)

Supplementary Ta	ble S1 (Crystallographic	parameters of	of PbFeO3	refined	from
SXRD pattern at R	RT ^a					

atom	site	x	у	Z	$100 \times B_{iso}$ (Å)
Pb1	4 <i>c</i>	0	-0.0037(1)	0.25	0.78(1)
Pb2	4 <i>c</i>	0	0.4996(1)	0.25	0.78(1)
Pb3	4 <i>c</i>	0	0.8282(1)	0.25	0.78(1)
Pb4	4 <i>c</i>	0	0.1546(1)	0.25	0.78(1)
Pb5	4 <i>c</i>	0	0.3349(1)	0.25	0.78(1)
Pb6	4 <i>c</i>	0	0.6593(1)	0.25	0.78(1)
Fel	8 <i>d</i>	0.25	0.25	0	0.22(2)
Fe2	16 <i>h</i>	0.2558(6)	0.5840(1)	0.9993(6)	0.22(2)
01	8g	0.301(4)	0.7756(8)	0.25	1.8(3)
02	16 <i>h</i>	0.308(2)	0.6732(7)	0.053 (2)	1.8(3)
03	8 <i>f</i>	0	0.2703(9)	-0.064(4)	1.8(3)
O4	8e	0.277(4)	0	0	1.8(3)
05	8 <i>f</i>	0	0.0763(10)	1.050(4)	1.8(3)
06	8g	0.187(4)	0.5869(8)	0.25	1.8(3)
07	8 <i>f</i>	0	0.6082(9)	-0.038 (4)	1.8(3)
08	8g	0.283(4)	0.4047(7)	0.25	1.8(3)

^{*a*}Space group *Cmcm* (No. 63), Z = 24. a = 7.88504(2)Å, b = 23.37741(8) Å, c = 7.70905(2) Å, $\rho_{cal} = 8.723(1)$ g/cm³, V = 1421.023(1) Å³. $R_{wp} = 7.63\%$, $R_p = 5.30\%$, $\chi^2 = 9.20$.

Supplementary Table S2 Pb-O and Fe-O bond lengths and BVSs for PbF	eO3
Refined from SXRD pattern at RT.	

	Distance (Å)	Average bond length (Å)	BVS
Fe1-O	1.897(2) × 2	2.014	3.03
	2.058(2) × 2		
	$2.087(3) \times 2$		
Fe2-O	1.952(3)	2.032	2.87
	1.973(3)		
	1.981(2)		
	2.009(3)		
	2.115(2)		
	2.165(2)		
Pb1-O	2.427(4) × 2	2.771	1.94
	2.738(6) × 2		
	2.866(6) × 4		
	2.912(6) × 2		
Pb2-O	2.516(4) × 2	2.778	2.01
	2.611(5) × 4		
	3.005(6) × 2		
	3.148(6) × 2		
Pb3-O	$2.475(5) \times 2$	2.774	2.23
	$2.675(5) \times 2$		
	2.712(6) × 2		
	2.786(3) × 4		
	3.213(3) × 2		
Pb4-O	2.189(4) × 4	2.588	3.72
	2.395(5) × 2		
	2.933(4) × 2		
	3.235(6) × 2		
Pb5-O	$2.092(4) \times 2$	2.455	3.93
	2.107(4) × 2		
	2.767(6) × 2		
	$2.853(5) \times 2$		
Pb6-O	2.182(4) × 2	2.541	3.52
	2.245(6) × 2		
	2.521(4) × 2		
	$2.880(4) \times 4$		

	4f _{5/2}		4f _{7/2}	
PbCrO ₃	0.61	0.39	0.61	0.39
PbFeO ₃	0.59	0.41	0.58	0.42
PbCoO ₃	0.48	0.52	0.45	0.55

Supplementary Table S3 | Peak area ratio for each peak and calculated average Pb valence for HAXPES data.

Supplementary Figure S1 | ED patterns along the pseudocubic zone axis at RT for PbFeO₃. (a) [100] and (b) [001] axis. Multiple scattering effects make it possible to observe h00 reflections with h = odd at [010].

Supplementary Figure S2 | Temperature dependence of thermogravimetry (TG) and differential thermal analysis (DTA) for PbFeO₃.

Supplementary Figure S3 | Temperature dependent XAS measurement for PbFeO₃. (a) Fe $K_{\beta 1}$ -edge for PbFeO₃. (b) Fe K-edge for PbFeO₃ in PFY model. (c) Pb L_3 -edge for PbFeO₃ in PFY model. (d) High resolution Pb L_3 -edge for PbFeO₃.

Supplementary Figure S4 | Represents the Pb^{2+}/Pb^{4+} for different charge-order phases. (a) rock-salt (*Cm*), (b) layered (*Pc*), (c) mixed (*Pm*) and (d) columnar (*Pmmn*).

Supplementary Figure S5 | Mössbauer spectrum for the ⁵⁷Fe-enriched powder sample at 300 K. The spectrum can be fitted with three sets of magnetically-split sextets, which are attributed to Fe at the 16*h* site (olive, 60%), 8*d* site (blue, 34%), and at α -Fe₂O₃ impurities (pink, 6%).

Supplementary Figure S6 | The NPD patterns and the refinement results at 100 K and 475 K for PbFeO3. The observed (dark cyan circles), calculated (red line), and difference (dark gray) values are shown. The ticks correspond to the allowed nuclear (black), magnetic (pink) Bragg peaks of PbFeO3 and allowed nuclear (navy), magnetic (green) Bragg reflections of the impurity phase Fe₂O₃ (~5 wt %), respectively.

Supplementary Figure S7 | Magnetic Bragg peaks and the fitting curves using the three different spin models at 100 K (left panel) and 475 K (right panel) for several characteristic peaks of NPD patterns of PbFeO₃. The gray balls and solid curves correspond to measured data and fitted results, and three spin models (Γ_4 , Γ_1 and Γ_2) are represented from up to down, respectively.

Supplementary Figure S8 | The NPD patterns measured at 2 - 625 K for PbFeO3.

Supplementary Figure S9 | Symmetric distortions which owe their origin to the special arrangements of Pb cations. The symmetric distortions that correspond to DT1 (transforms $Pm\overline{3}m \rightarrow P4/mmm$, (a)), DT2 (transforms $Pm\overline{3}m \rightarrow Pmmm$, (b)), Z4 (transforms $Pm\overline{3}m \rightarrow Cmmm$, (c)) and Z4 (transforms $Pm\overline{3}m \rightarrow Pmma$, (d)). Blue and cyan layers represent average 2+ and 3.5+ oxidation state of Pb ions, respectively. The Fe and oxygen movements are denoted by yellow and cyan arrows, respectively. The in-phase oxygen octahedra rotations at the Fe1 layers around *a* axis is denoted by black arrow.

Supplementary Figure S10 | Parameterize the spin Hamiltonian. (a) and (b) Superexchange interaction paths between Fe spins. (c) Estimated values of the symmetric exchange interactions between Fe spins and single ion magnetic anisotropy energies of Fe1 (E^1 and D^1) and Fe2 (E^2 and D^2) ions.

Supplementary Figure S11 | Results of finite temperature Monte Carlo simulations. (a) Exhibits magnetic phase transition ~ 580 K for both S_{Expt} and S_{Opt} structures. (b) Denotes the *G*-type (G_y) antiferromagnetic structure at 20 K. The cyan and blue arrows represent Fe1 and Fe2 spins, respectively.

Supplementary Figure S12 | Stability of various magnetic phases as modulation of structural distortions. (a) and (b) Estimated single ion anisotropy (SIA) parameters associated with Fe1 (E^1 and D^1) and Fe2 (E^2 and D^2) magnetic sublattices as a function of DT2 ($Pm\overline{3}m \rightarrow Pmmm$) and Z4 ($Pm\overline{3}m \rightarrow Cmmm$) distortions, respectively. The magnetic phases stabilized in the Monte Carlo simulations considering the estimated SIA parameters below the magnetic phase transition are also shown.