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Supporting Tables 

Table S1. Crystallographic parameters of CaCu3Ir4O12 refined from XRD pattern at RT[a]. 

atom site x y z 100×Uiso (Å2) G 

Ca 2a 0 0 0 1.23(2) 0.99(1) 

Cu 6b 0 0.5 0.5 0.24(6) 0.96(1) 

Ir 8c 0.25 0.25 0.25 0.22(1) 1.00(1) 

O 24g 0.3060(1) 0.1699(4) 0 1.73(2) 1.07(2) 

[a] Space group Im−3 (No. 204), a = 7.46996(1) Å, Rwp = 4.35%, Rp = 3.2%, χ2=2.688, G represents the site occupancy factor. 

 

Table S2. Selected bond lengths and angles for CaCu3Ir4O12. 

Parameters Values 

dCa−O (×12) (Å) 2.615(3) 

dCu−O (×4) (Å) 1.926(3) 

dCu−O (×4) (Å) 2.860(3) 

dIr−O (×6) (Å) 2.005(1) 

∠Ir−O−Ir (º) 137.3(2) 

∠Cu−O−Ir (º) 110.7(1) 

∠O−Ir−O (º) 88.8(1) 

∠O−Cu−O (º) 82.4(2) 

 

Table S3. ICP-OES analysis of dissolved Ca, Cu and Ir ions for CaCu3Ir4O12 after the durability test. 

Sample amount 10 μg 

Concentration of Ca ion (ppb) 0.021 

Concentration of Cu ion (ppb) 0.12 

Concentration of Ir ion (ppb) 0.24 

Loss of mass (Ca) 6.17 % 

Loss of mass (Cu) 7.45 % 

Loss of mass (Ir) 0.037 % 
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Table S4. Summary of the HER performance for CaCu3Ir4O12 and other state-of-the-art perovskite electrocatalysts. 

Catalyst Electrolyte η10 (mV)[a] Tafel slope (mV·dec−1) Ref. 

CaCu3Ir4O12 1 M KOH 187 39 This work 

IrO2 1 M KOH 291 53 This work 

Pt/C 1 M KOH 65 32 This work 

Pr0.5BSCF 1 M KOH 237 45 [1] 

LBSCOF 1 M KOH 180 44 [2] 

SNCF-NR 1 M KOH 232 103 [3] 

LBSCCF 1 M KOH 338 80 [4] 

3DOM-LFC82 1 M KOH 350 110 [5] 

SCFP nanofilm 1 M KOH 110 94 [6] 

SrCo0.7Fe0.25Mo0.05O3-δ 1 M KOH 323 94 [7] 

LaCo0.94Pt0.06O3-δ 0.1 M KOH 294 148 [8] 

(Gd0.5La0.5)BaCo2O5.75 1 M KOH 185 28 [9] 

NdBaMn2O5.5 1 M KOH 290 87 [10] 

PrBaCo2O5.5 1 M KOH 245 89 [11] 

Sr2RuO4 1 M KOH 61 51 [12] 

[a] η10 presents overpotentials at the current density of 10 mA·cm−2. 

 

Table S5. Structural parameters of CaCu3Ir4O12 and reference samples with various potentials extracted from the Ir L3-edge EXAFS 
fitting.

[a] 

Measure 
conditions 

Atomic 
scatter 

No. of atoms (CN)[b] 
Interatomic 

distance (Å)[c] 
Debye-Waller 

factor (10-3×Å2)[d] 
ΔE0(eV)[e] R factor 

IrO2 Ir−O 5.9±0.62 2.0186 4.6±1.4 9.8±1.6 0.008 

CaCu3Ir4O12 Ir−O 5.4±0.60 2.0114 2.2±1.5 9.3±1.2 0.007 

OCP Ir−O 5.5±0.66 2.0195 2.0±1.6 9.1±1.3 0.008 

1.35 V Ir−O 5.5±0.56 2.0199 2.0±1.5 9.4±1.1 0.005 

1.45 V Ir−O 5.4±0.50 2.0188 2.4±1.3 9.7±1.0 0.005 

1.48 V Ir−O 5.3±0.58 2.0150 1.9±1.4 9.7±1.2 0.006 

1.50 V Ir−O 5.3±0.70 2.0131 2.0±1.9 9.8±1.5 0.009 

[a] S0
2 was fixed as 0.79 during EXAFS fitting. [b] CN is the coordination number. [c] Interatomic distance is the bond length between Ir central atoms and surrounding 

coordination atoms. [d] Debye-Waller factor is a measure of thermal and static disorder in absorber-scattering distances. [e] ΔE0 is the difference between the zero kinetic 

energy value of the sample and that of the theoretical model. 
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Table S6. Structural parameters of CaCu3Ir4O12 with various time extracted from the Ir L3-edge EXAFS fitting. 

Measure 
conditions 

Atomic 
scatter 

No. of atoms (CN) 
Interatomic 
distance (Å) 

Debye-Waller 
factor (10-3×Å2) 

ΔE0(eV) R factor 

OCP Ir-O 5.5±0.90 2.0151 2.9±2.5 8.9±1.9 0.013 

1min Ir-O 5.4±0.90 2.0103 2.6±2.4 8.5±1.9 0.014 

2min Ir-O 5.4±0.86 1.9990 2.3±2.3 8.9±1.9 0.016 

4min Ir-O 5.4±0.77 1.9971 2.7±2.0 8.8±1.7 0.012 

6min Ir-O 5.4±0.86 1.9961 2.1±2.4 8.9±1.9 0.017 

8min Ir-O 5.4±0.99 1.9861 3.0±2.5 8.6±2.1 0.019 

10min Ir-O 5.3±0.85 1.9824 2.7±2.2 9.1±1.8 0.016 

15min Ir-O 5.3±0.51 1.9740 3.3±2.6 9.4±1.1 0.019 

20min Ir-O 5.3±0.49 1.9710 3.3±2.6 9.1±1.04 0.017 

25min Ir-O 5.2±0. 90 1.9711 2.6±2.3 9.5±1.99 0.017 

30min Ir-O 5.2±0. 66 1.9706 2.5±1.8 9.7±1.50 0.009 
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Supporting Figures 

 

Figure S1. The particle size analysis using the TEM method. (a) The TEM image of CaCu3Ir4O12. (b) Distribution histogram 

for the particle size of CaCu3Ir4O12 catalyst derived from (a). 

 

 

Figure S2. Elemental mapping images of CaCu3Ir4O12. 
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Figure S3. Temperature-dependent resistivity measured between 2−300 K for CaCu3Ir4O12, 6H-SrIrO3, 3C-SrIrO3 and IrO2. 

 

 

Figure S4. ECSA analyses of CaCu3Ir4O12 and commercial IrO2 catalysts. (a) and (b) Cyclic voltammograms at different scan 

rates in a potential window where no Faradaic processes occur (1.02 to 1.12 V vs. RHE) for CaCu3Ir4O12 and IrO2, respectively. 

(c) and (d) Charging current density (Δj = (j+ − j−)/2) at −0.25 V vs. RHE plotted against the scan rate for CaCu3Ir4O12 and 

IrO2. The slope of the fitting line is used for determination of the double-layer capacitance (Cdl). 
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Figure S5. ECSA analyses of 6H-SrIrO3, 3C-SrIrO3 and Sr2FeIrO6 catalysts. (a), (c) and (e) Cyclic voltammograms at different 

scan rates in a potential window for 6H-SrIrO3, 3C-SrIrO3 and Sr2FeIrO6, respectively. (b), (d) and (f) Charging current density 

(Δj = (j+ − j−)/2) at −0.25 V vs. RHE plotted against the scan rate for 6H-SrIrO3, 3C-SrIrO3 and Sr2FeIrO6, respectively. The 

slope of the fitting line is used for determination of the double-layer capacitance (Cdl). 
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Figure S6. Mass activity based on the oxide weight at different potentials. 

 

 

Figure S7. XRD patterns of CaCu3Ir4O12 before and after OER with the standard pattern of ICSD PDF#251658. 
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Figure S8. HRTEM images of CaCu3Ir4O12 before (a) and after (b) OER. 

 

 

Figure S9. HER polarization curves of CaCu3Ir4O12 and related references. (a) HER polarization curves in 1 -M KOH. (b) 

Corresponding Tafel plots derived from (a). 
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Figure S10. Mass activity for the HER. (a) Mass activities of the samples at the overpotential of 0.18 V vs. RHE. (b) Mass activity 

based on the oxide weight at different potentials. 

 

 

Figure S11. Chronopotentiometry measurement under the HER condition of CaCu3Ir4O12 at 10 mA·cm−2. 
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Figure S12. Normalized operando Ir L3-edge XANES spectra with various potentials in 1 M KOH at ambient conditions. When 

the voltage is lowered to 1.35 V in the later stage of the reaction, the peak position is the same as that when the high voltage 1.50 

V is applied, which indicates the irreversibility of the reaction. 

 

 

Figure S13. Fourier transformed k2-weighted Ir L3-edge EXAFS spectra of CaCu3Ir4O12 with reference IrO2 under various 

potentials. Hollow circles are FT-EXAFS spectra and red lines are fitted results. The peaks at 1.0−2.0 Å corresponds to the 

distance of Ir−O bond. 
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Figure S14. 3D and color map showing the time-dependent operando k2-weighted FT-EXAFS spectra at Ir L3-edge of 

CaCu3Ir4O12. 

 

 

Figure S15. Fourier transformed k2-weighted Ir L3-edge EXAFS spectra of CaCu3Ir4O12 with various time. Solid circles are the 

FT-EXAFS spectrum and cyan lines are fitted results. The peaks at 1.0−2.0 Å corresponds to the distance of Ir−O bond. 
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Figure S16. The optimized local structures for the (001) surface. (a) CaIr4+O3, (b) CaCu3Ir4+
4O12, (c) Ca0.5Ir5+O3, and (d) 

Ca0.5Cu1.5Ir5+
4O12. The blue-grey, blue, dark green, and red balls represent Ca, Ir, Cu, and O atoms, respectively. 

 

 

Figure S17. Systematic comparison of OER polarization curves for CaCu3Ir4O12 and related references. 
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Figure S18. Temperature-dependent resistivity measured between 2−300 K for related insulating references. 

 

 

Figure S19. Systematic comparison of catalytic activity and conductivity for CaCu3Ir4O12 and related references. 
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