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I. Rietveld refinement 

Powder X-ray diffraction patterns (PXRD) were collected at room temperature on a Huber diffraction and 

positioning equipment with monochromatic Cu Kα radiation. Rietveld refinements with the pseudo-Voigt function 

were performed within the GSAS package (EXPGUI), of which the Chebyshev polynomial of 10 terms was used 

to model the backgrounds[1, 2].  

 

Figure S1. Observed and simulated diffraction patterns for GSO (a) and La9.33 (b), along with the differences in Obs − Cal and 

the Bragg positions (vertical bars). 

The PXRD patterns confirm the formation of single-phase GSO polycrystalline powders with all the observed 

reflections indexed into the P63/m (176) space group. The derived structural parameters are a = b = 9.4073(3) Å, c 

= 6.8615(2) Å and α = β = 90°, γ = 120°, with a calculated density ρ = 6.4817 g cm-3. The goodness of fit χ2 is 4.405, 

with final reliability indices of wRp/Rp = 0.0232/0.0164 = 1.41. The refined positional and thermal parameters and 

selective bond lengths and angles are listed in Table S1-2. Refinement of the experimental La9.33Si6O26 pattern gives 

wRp/Rp = 0.0462/0.0309 = 1.50, and a goodness of fit χ2 = 4.270. 

Table S1. Crystallographic parameters and the equivalent isotropic displacement parameters of GSO. 

Atom Wyck. S.O.F. x/a y/b z/c U [Å2] 

Gd1 6h 1 0.24075(17) 0.23313(16) 3/4 0.0059 

Gd2 4f 0.8333 1/3 2/3 0.0080(5) 0.0059 

Si1 6h 1 0.4065(6) 0.3787(6) 1/4 0.0007 

O1 6h 1 0.3182(13) 0.4897(12) 1/4 0.0015 

O2 6h 1 0.5959(13) 0.4585(12) 1/4 0.0015 

O3 12i 1 0.3425(7) 0.2500(7) 0.0692(8) 0.0015 

O4 2a 1 0 0 1/4 0.0015 
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Table S2. Selective bond lengths and bond angles of GSO. 

Bond lengths Bond angles 

From To d [Å] Angle  Degrees 

Gd2 Gd2 3.32097 Gd1_O1_Gd2 106.12(32) 

Gd2 Gd2 3.54053 Gd1_O1_Gd2 106.14(32) 

Gd1 Gd1 3.86217 Gd1_O1_Si1 97.0(5) 

Gd2 Gd1 3.99032 Gd2_O1_Gd2 92.2(4) 

Gd1 Gd1 4.09172 Gd2_O1_Si1 126.64(32) 

Gd2 Gd1 4.11991 Gd2_O1_Si1 126.62(32) 

Gd1 O4 2.22983 Gd1_O3_Gd1 116.63(25) 

Gd2 O1 2.30477 Gd1_O3_Si1 138.1(4) 

Gd1 O3 2.36356 Gd1_O3_Si1 99.61(31) 

Gd2 O2 2.39736 Gd1_O4_Gd1 120.000(0) 

Gd1 O3 2.44488 Gd1_O4_Gd1 120.000(0) 

Gd1 O2 2.51375 Gd1_O4_Gd1 120.000(0) 

Gd1 O1 2.67929   

Gd2 O3 2.79359   

Gd2 O3 2.79359   

Gd1 O3 3.34617   

Gd1 O1 3.63251   

Gd2 O3 3.9857   

Gd1 O2 3.98868   

II. Magnetic modeling 

The free Heisenberg spin model that describes the bulk magnetization M, under an applied field of H and 

temperature T, takes the form  

 
0 ( )JM M B x=  (1) 

of which the saturation magnetization M0 = JgJμB, x = JgJμBμ0H/kBT, and BJ(x) represents the Brillouin function, 
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where gJ = 2 is the spectroscopic splitting factor for Gd3+ ions, J = S = 7/2 denotes the electronic spin, μB is the 

Bohr magneton and kB is the Boltzmann constant. 

The dipolar energy scale, Dnn, is estimated by taking the form, 
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of which the effective magnetic moments, μeff = gJ(J2+J)1/2, Rnn denotes the nn distance determined by the Rietveld 

refinements. 

The effective exchange constant can be related to the Weiss temperature ѲW via a standard mean-field estimate, by 
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where Jex is the exchange constant and Nnn represents the number of nearest neighbors for a single Gd3+. We here 

adopted a crude molecular model to characterize the nn exchange, Jnn, by assuming that an internal field Hi is 

generated with the partial ordering of spin-7/2 Gd3+ ions[3-6]. The total effective field acting on magnetic ions then 

reads as  

 
tot ext i dH H H H= + +  (5) 

where Hext and Hd represent the applied field and the dipolar field, Hi is proportional to the degree of order in the 

system. This approach is justified in the case of the ensembled isotropic Gd3+ spins (the contribution of orbital 

momentum L is zero) and in the analyzed paramagnetic regime where quantum fluctuations can be neglected. 

Considering the exchange part of the Hamiltonian only, we get  
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of which the average values are 
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By finding the root of the function  

 (| |, )J J totM g JB H T=  (8) 

we then get the exchange parameter Jnn. 

 

Figure S2. (a) The derivative of 1/χ(T) (close marks), and the corresponding derivative of the Curie-Weiss fit (dash line). (b) The 

derivative of the field-dependent magnetization, dM/dH, down to 1.3 K. (c) The dc susceptiobility in ther form of χT vs. T. 

III. Analysis of heat capacity and magnetic entropy 

According to the thermodynamic Maxwell relation, the isothermal magnetic entropy change can be related to the 

magnetization dependences by   

 ( ) ( )T H

S M

H T

 
=

 
 (9) 

where the calculation is numerically approximated by  
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using the magnetization data collected at discrete temperature T and field H intervals. Additionally, the numerical 

calculation can be processed from heat capacity data, by  
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0
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T mag
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S dT S T

T
 = −  (11) 

where Smag(T, 0) denotes the zero-field magnetic entropy, and Cmag(T, H) = Cp(T, H) − CL represents magnetic heat 

capacity. The low-temperature lattice contributions CL (0.05 K < T < 3 K) is determined by fitting and extrapolating 

the heat capacity data of La9.33 with a single Debye model,  
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where NA denotes the Avogadro constant, ΘD denotes the Debye temperature, and n is the number of atoms per 

chemical formula, respectively.  

 

Figure S3. (a) Heat capacity of La9.33 and the single Debye fit. (b) Temperature dependences of magnetic heat capacity Cmag 

under different magnetic fields. The dashed line represents a two-level Schottky fitting. 

We then adopted a mean-field approach, corresponding to the Jnn approximation, to bring the calculated results into 

closer agreement with experimental values. The model here starts from a paramagnetic phase, where the magnetic 

entropy Smag is related to the partition function Z by 

 
mag ( ln )S d T Z

R dT
=  (13) 

in which case the partition function Z takes the form, 
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where MJ = gJμBJ represents the magnetic moment of one atom. Summation of Eq. (13-14) gives the magnetic 

entropy Smag per mole as  
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where x = gJμBS(H+Hi)/kBT. The Smag-T phase diagram was thus modified considering the discrepancy between the 

calculated data and the model results. 

 

Figure S4. (a) Magnetic entropy change of some representative ADR materials under external fields of 1 T. (b) Adiabatic 

temperature change, Tad, under varied constant fields. 

IV. Scaling analysis 

The order of magnetic phase transitions can be determined by assessing the universality of the magnetocaloric 

responses[7-11]. A single master curve (Figure S5) is constructed by normalizing the −ΔSmag(H, T) datasets 

phenomenologically with respect to the corresponding maximum by ΔSmag(H, T)/ΔSmax, and rescaling the 

temperature axis to  

 max max( ) / ( )nor refT T T T T= − −  (16) 

of which Tmax represents the temperature of −ΔSmax, and Tref corresponds to the reference temperature. Experientially, 

the Tref here was defined by the temperature corresponding to the half maximum of the peak values of the magnetic 

entropy change curves, ΔSmag(H, Tref) = 1/2ΔSmax
[7-11]. 

 

Figure S5. (a) The phenomenological universal curves derived from a total of 36 applied fields. (b) The field dependences of 

the exponent n(H, T) of isothermal curves in the temperature range of 0.4− 11K.  
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A quantitative criterion is also adopted by further expanding the power law to the general field variance of the 

magnetic entropy datasets, −ΔSmag(H, T) ∝ Hn, in the form of  

 
ln | |

( , )
ln

magd S
n H T

d H


=  (17) 

A scaling nature of the trend of n(H, T)→2 is identified, as illustrated in Figure S5, which resembles those of the 

second-order thermomagnetic phase transitions and in accordance with the universal analysis[10, 12]. It should be 

noted that the regions of low applied fields (H < 0.5 T) were omitted for possibilities of ‘multi-domain’ state[10]. 
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