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ABSTRACT: By means of X-ray absorption spectroscopic studies, both experimentally ol
and theoretically, we investigated the magnetic properties of the transition-metal-only
double perovskite oxide Mn,CoReOg, which experiences an antiferromagnetic transition
at Ty = 93 K, whereas it holds a considerable net moment at low temperature. Internal
exchange fields against the applied magnetic field for all the transition metal ions were
identified, providing a microscopic insight into the intrasite antiferromagnetic couplings. )
Nevertheless, parallelly oriented canted spins of the Mn, Co, and Re cations were -8}
observed. In particularly, the Mn and Co cations hold considerable canting moments,
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which can be ascribed to the competition between the ferromagnetic intersite and

antiferromagnetic intrasite magnetic interactions. Moreover, a spin-valve-type magneto-

resistance was observed below the Ty. The concurrence of the magnetoresistance effect and the antiferromagnetic semiconductive
nature make Mn,CoReOg a promising candidate for high-speed and energy-saving spintronics applications.

B INTRODUCTION

The realization and utilization of both charge and spin degrees
of freedom of the electrons underpin spintronics.' > Reported
spin-dependent electron transport mechanisms are giant
magnetoresistance (GMR) in trilayer heterostructures with a
nonmagnetic spacer sandwiched by two ferromagnetic (FM)
electrodes,” tunnel magnetoresistance (TMR)® in magnetic
tunnel junctions (MTJs), and magnetic random access
memories (MRAM:s).®

Antiferromagnetic (AFM) spintronics has attracted intense
attention owing to its fast dynamics with frequency up to
terahertz.” However, the zero net moment of the AFM
materials severely impedes the manipulation of magnetization,
leaving great challenges in applications. Nevertheless, multiple
spin-dependent phenomena have been discovered in AFM
materials that can encode and transport information through
such as magnetoresistance (MR),* magnetoelectric multi-
ferroics,” anomalous Hall effect,'® spin torque,11 magneto-
optical Kerr effect,'” etc. Therefore, AFM materials hold great
opportunities for both academic studies and functional
applications.

Double perovskite oxides with a formula of A,BB’Og4 can
flexibly accommodate different types of ions at the A, B, and B’
sites, making them attractive for engineering and studying
potentially new spintronic materials. For example, the up-spin
channel of Sr,FeMoOg opens up a gap, while the down-spin
channel is conductive, making it a half metal with 100% spin
polarization and exhibiting GMR.">'* Similar half metallic
behavior combined with GMR is also observed in double
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perovskite SryFeReOg.'> Sr,CrOsOg4 has a super high T¢ of
725 K as a result of the robust AFM coupling between the Cr
and Os ions at the B and B’ sites, respectively.'® Y,NilrOg
exhibits giant exchange bias attributable to the pinned
magnetic domains due to the combination of strong spin—
orbit coupling of the Ir ions and the AFM coupling of the Ni
and Ir sublattices.'”” In most cases, the A site of double
perovskites hosts nonmagnetic ions such as alkali, alkali earth,
and lanthanides. Recent studies have shown that transition
metals can also occupy the A site, resulting in novel magnetic
and electronic interactions through the A-B and A-B’
pathways, further leading to intriguing properties for the
transition-metal-only double perovskite oxides such as half
metallicity,"® GMR,'? cation rattling,20 and multiferroicity.21
Nevertheless, studies on transition-metal-only double per-
ovskite oxides are still limited. The small transition metal at the
A site leads to a significant mismatch between the A and B
sites, resulting in significant tilt of the BO4 octahedra. To the
best of our knowledge, the few-reported transition-metal-only
double perovskite oxides are prepared under high pressure over
5 GPa.'"* Mn,CoReO4 (MCRO) is the fourth known
transition-metal-only double perovskite oxide.”® It experiences
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an antiferromagnetic transition at Ty = 93 K but possesses a J T
considerable net moment at low temperature. In this paper, by P2,/n L

experimental and theoretic X-ray absorption spectroscopic
studies, we obtained a negative internal magnetic field for all
the three transition metal cations, indicating the dominant
AFM intrasite magnetic couplings. However, parallel canting
spins of Mn, Co, and Re are identified. In particularly, the Mn
and Co cations hold considerable canting moments, which can
be ascribed to the competition between the intra- and
intersites magnetic interactions between them. Moreover, a
spin-valve-type MR effect was observed below Ty. Therefore,
the MCRO holds basic traits that are relevant to future high-
speed and energy-saving AFM spintronics applications.

B METHODS

Polycrystalline MCRO was synthesized under high-pressure
and high-temperature (HPHT) conditions. Stoichiometric
high-purity (>99.9%) starting materials MnO, CoO, and
ReO; were thoroughly ground with an agate mortar in an
argon gas atmosphere. Then, the mixed powder was pressed
into a platinum capsule of 3 mm diameter and 4 mm height
and then treated with an anvil-type high-pressure apparatus
under 9 GPa and 1523 K for 30 min. After the HPHT
treatment, the temperature was quenched to room temperature
in seconds, and the pressure was slowly released to ambient in
several hours.

The synchrotron X-ray diffraction (SXRD) patterns were
collected at the BLO2B2 (4 = 0.65 A) beamline of SPring-8 in
Hyogo. The 20 scan was performed from 2 to 70° with a step
of 0.006°. The Rietveld refinement of crystallographic
parameters was performed using the GSAS software package.”*
The magnetic susceptibility and magnetization were measured
by using a Quantum Design superconducting quantum
interference device magnetometer (MPMS-3). Both zero-
field-cooling (ZFC) and field-cooling (FC) modes were
adopted for magnetic susceptibility measurements with a 0.1
T magnetic field. The electrical resistivity was measured using
a sample pellet with the size of about 2 X 1 X 1 mm® by a
standard four-probe method on a Quantum Design physical
property measurement system (PPMS-7). The heat capacity
was measured using a sample pellet of a size of about 2 X 2 X
0.4 mm® on PPMS-7.

The Mn-L,; and Co-L,; X-ray absorption spectra (XAS)
were measured at room temperature via total electron yield
(TEY) mode at the TPS 45A beamline of National
Synchrotron Radiation Research Center (NSRRC) in Hsinchu.
The Mn-L,; and Co-L,; X-ray magnetic circular dichroism
(XMCD) spectra were measured at 10 K and 8 T using TEY
mode at the VEKMAG end station™ at the HZB/BESSY II
synchrotron radiation facility in Berlin. The XAS and XMCD
at the Re-L, ; edges were measured in transmission at beamline
P09 at PETRA III at DESY in Hamburg, and the Re-L,,
XMCD was measured at 10 K and § T. For the XMCD
measurements, both the magnetic field and polarization
(~77% for VEKMAG and ~99% for P09) of the light were
flipped to obtain the y* (parallel) and u~ (antiparallel) spectra.

B RESULTS AND DISCUSSION

Figure 1 displays the SXRD pattern of MCRO, which can be
refined with the space group P2,/n (no. 14) with lattice
parameters of a = 5.23506(1) A, b = 5.35179(1) A, ¢ =
7.63109(2) A, and 8 = 89.966(0)°. The crystal structure was
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Figure 1. SXRD pattern and Rietveld refinement of MCRO. The
black circles, red lines, and blue lines indicate the observed, calculated,
and difference, respectively. The magenta ticks indicate the allowed
Bragg reflections for the space group P2,/n. The inset in the middle
displays the SXRD pattern near the (011) diffraction peaks. The inset
at the right side displays the crystal structure of MCRO. Mn, Co, Re,
and O are shown in purple, blue, gray, and red, respectively.

depicted in the inset at the right side of Figure 1. As shown in
Figure 1 and the inset in the middle, the (011) diffraction peak
clearly indicates the rocksalt—tyge distribution of Co and Re at
the B and B’ sites, respectively.”® A slight antisite occupancy of
2% between Co and Re was found. A previous neutron powder
diffraction (NPD) also indicated ~16% disorder between A-
site Mn and B-site Co.”* The detailed refined parameters from
SXRD are given in Table SI. The valence states of Mn*" and
Co®* can be obtained via the bond valence sum (BVS)”’
calculations based on the refined bond lengths (Table S2). For
Re, the averaged Re—O bond 1en§th is 1.920 A, very close to
that of Sr,MgRe® Oy (1.912 A),” indicating a Re®" state for
MCRO.

To directly obtain the valence states of the cations in
MCRO, we performed XAS measurements. It is well-known
that XAS is an element-selective technique highly sensitive to
the valence state. For an open d shell system, an increase in the
valence of the transition metal ion by one leads to a shift of the
L, ; XAS spectrum to higher energies by one electronvolt (eV)
or more that is also accompanied by remarkable changes of the
spectral feature.”” ' As shown in Figure 2a, the white line of
the Mn-L,; XAS of MCRO resembles that of Mn** reference
compound MnO with the L,/L; peak locating at the same
energy as that of MnO, which points to the occurrence of a
Mn?* valence state. Similarly, as shown in Figure 2b and Figure
2¢, the peak energies and shape of the white lines of the Co-
L,; and Re-L; XAS respectively resemble those of the high-
spin Co®* and Re® references,”” indicating the occurrence of
high-spin Co™* (t,.%,”) and Re®" valence states. Therefore, the
valence configuration Mn**/Co?*/Re®" is experimentally
validated.

After the determination of the structure and valence states,
we continue with the description of the magnetic properties of
MCRO. Figure 3a displays the temperature-dependent
magnetic susceptibility of MCRO. At Ty = 93 K, an AFM
transition can be clearly identified. An NPD study has
demonstrated that this AFM transition is related to the
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Figure 2. XAS at the (a) Mn-L,;, (b) Co-L, 3, and (c) Re-L; edges of
MCRO. The XAS of MnO, CoO, and Sr,MgReOg are displayed as
Mn?*, Co*, and Re®* references, respectively.
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Figure 3. (a) Temperature-dependent magnetic susceptibility of
MCRO. The inset displays the region near Ty = 93 K. (b) The
inversed magnetic susceptibility (black circles) and the Curie—Weiss
fitting above 180 K with the formula ™' = (T — 6)/C. (c) Field-
dependent magnetization of MCRO at selected temperatures.

antiparallel spin alignment of all of the Mn, Co, and Re
sublattices.”® It is worth noting that the AFM transition is
relatively broad in temperature, as an implication of competing
FM and AFM coupling mechanisms. Moreover, the ZFC and
FC curves start to separate below Ty (see the inset of Figure
3a) and further split with the temperature decreasing,
indicating the formation of a canted AFM structure. As
shown in Figure 3b, the Curie—Weiss fitting was performed
above 180 K with the function ¥ ' = (T — 0)/C. The positive
Weiss temperature @ = 50 K indicates the presence of FM
interactions in Mn,CoReOg. According to the fitted Curie
constant, C = 8.18 emu K mol™ Oe'", the effective magnetic
moment is calculated to be ., = 8.09 (/8C) Bohr magnetons
per formula unit (pp/fu.), slightly smaller than the spin-only

theoretical value of 9.38 up/fu. (g,/ X, S(S; + 1), where g = 2
is the Landé factor of spins), considering Mn*" (S = 5/2), Co**
(S = 3/2, high spin), and Re® (S = 1/2) ions. The smaller
experimental value can be a result of a reduction of the Re®*
moment through the spin—orbit coupling. Figure 3c displays
the isothermal field-dependent magnetization of the MCRO.
At temperatures above Ty, the magnetization is linearly
dependent on the magnetic field, in agreement with a
paramagnetic state. When the temperature further decreases
down to 2 K, a prominent hysteresis and moment of 1.1 uy/fu.
at 7 T can be found, which is indicative of the competition
between the AFM and FM couplings, which will be discussed
later.

We further measured the heat capacity of the MCRO. As
shown in Figure 4a, a cusp feature emerges at Ty, in agreement
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Figure 4. (a) Temperature-dependent heat capacity of MCRO. (b)
Experimental heat capacity below 10 K (black circles) and the fitting
with the formula Cp/T = aT* + T2 + y (red line).

with the AFM transition. It is worth noting that this feature is
relatively weak, quite different from the sharp peak expected at
AFM transitions.”> To display the ingredients that contribute
to the heat capacity, we plotted the Cp/T-T> plot below 10 K,
as depicted in Figure 4b. The convex curve at low temperature
clearly indicates the magnetic contribution on the specific heat,
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in accord with the concurrence of both magnetic and
antiferromagnet interactions in MCRO. The heat capacity
can be well fitted with formula Cp/T = aT? + fT? + y, with a
=153 mJ mol™ K™, #=23.5mJ mol™ K™% and y = 4.24 mJ
mol™! K72 indicating that the phonons, magnons, and
electrons all contribute to the heat capacity, in agreement
with the canted AFM semiconductive nature of MCRO.

To obtain a deeper insight into the configuration of the
canted spins, we performed XMCD measurements on the Mn,
Co, and Re ions. It is known that the element-selective XMCD
is a sensitive probe for determining the spin alignment of the
magnetic ions.***** As shown in Figure S, the XMCD signal
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Figure S. XMCD spectra at the (a) Mn-L, 3, (b) Co-L, 3, and (c) Re-
L,; edges of MCRO. XAS with light polarization parallel (u*, black
lines) and antiparallel (7, red lines) to the magnetic field are shown.
The blue lines are the XMCD (u* — u~) spectra. The dashed lines
indicate an edge jump.

at the Ly (L,) edge of all transition metals is negative
(positive), demonstrating that the resultant spins direction of
Mn, Co, and Re are parallel to each other in an applied
magnetic field.***” Herein, MCRO provides a very rare
example of double perovskites with parallel spins at all A, B,
and B’ sites. Usually, the superexchange interaction between
the 5d and 3d ions through the A/B—O—B’ pathway and the
two sublattice double-exchange mechanism®® play roles on the
magnetic property. For example, in Sr,FeReOq, Sr,CrOsOg,
and Y,NilrOg, the B-site 3d and B’-site Sd ions are
ferrimagnetically (FiM) coupled."*™"” Similar FiM structures
can be also found in the quadruple perovskite oxides
CaCusFe,B’,0,, (B’ = Re and Os).”" ™"

One can observe that the XMCD signals for all the three
cations Mn, Co, and Re are much smaller than the typical
ferromagnets,“’43 as the net magnetization is from canted
spins. To obtain an inner view of the magnetic moments of the

15671

cations, we performed full-atomic-multiplet ligand-field calcu-
lations using the XTLS code.”* This theoretical calculation
includes the full intra-atomic multiplet interactions, the atomic
d spin—orbit coupling (SOC), the transition metal d to O-2p
hybridization, and the crystal field interaction. This model has
very successfully reproduced the line shape of XMCD spectra
of transition metal elements in the past decades.”*° The
parameters are listed in ref 47. The calculations reproduce the
measured spectra well, as shown in Figure 6. In our

(@) Mn-L, ——u"_calc
u_calc
= —— XMCD_calc
8
>
z Mn-L,
c
5
E
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Figure 6. Calculated XMCD spectra at the (a) Mn-L,;, (b) Co-L, ,,
and (c) Re-L,; edges of MCRO. The XAS with light polarization
parallel (u*, black lines) and antiparallel (u~, red lines) to the
magnetic field are shown. The blue lines are the XMCD (u* — u~)
spectra.

calculations, to obtain the intensity of the XMCD signal,
negative exchange fields (H,,) were adopted for all the three
transition metal ions Mn?*, Co*", and Re®"."” The negative H,,
is indicative of an internal magnetic field against the applied
field. These results provide a microscopic insight of the
intrasite AFM couplings of the Mn, Co, and Re sublattices.
From the cluster calculations, the spin and orbital moments
of Mn, Co, and Re are listed in Table 1, leading to a total
moment of 1.83 yp/fu. The obtained total moment larger than
that for the magnetization measurements (Figure 3c) could be
a result of the stronger applied magnetic field for the XMCD

Table 1. Spin and Orbital Moments Obtained from the
Cluster Calculations

cation Mg, (pp/atom) My, (up/atom)
Mn 0.471
Co 0.638 0.251
Re 0.0159 —0.0144
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measurements. One can also find considerable spin moments
of Mn and Co, indicating that the spins of Mn and Co are
notably canted along the applied magnetic field. Note that the
orbital moment of Mn*" is negligible because of the half-filled
3d orbit (t,’Te,*1). On the contrary, the spin moment of Re is
very small, indicating that the collinear AFM alignment of the
Re spins is almost maintain.

To understand the different canting behavior between Mn/
Co and Re sites, we discuss the possible magnetic interactions
in MCRO. The intrasite AFM structure is indicative of the
dominate long-range superexchange pathway M-O-M'-O-M, as
a consequence of the energy differences of the orbitals between
the M and M’ ions.**** Here, in MCRO, different orbitals of
3d-e,, 3d-ty,, and Sd-t,, for Mn?** (3d°%), Co** (3d”), and Re®*
(5d"), respectively, are involved in the magnetic couplings,
giving rise of the domination of the long-range superexchange
couplings. On the other hand, the canted moments of MCRO
indicate the competition of magnetic interactions against the
long-range superexchange one. Here, we consider the super-
expande pathway M-O-M'. As shown in Figure 7 and Table S3,

(a) 4 (b)

123.6
g’ 03 Mn
06.71405.6°

Figure 7. Bond angles of (a) Mn—O—Re, (b) Mn—O—Co, and (c)
Co—O—Re. The Mn, Co, and Re ions are shown in purple, blue, and
gray, respectively. The different O sites are shown in red, orange, and
brown, respectively.

the bond angle(s) £Mn—O—Co and ZMn—O—Re are close to
90°, and £Co—O—Re is close to 180°. According to the
Goodenough—Kanamori—Anderson rules,**™>? the B-site Co
is FM coupled with both the A-site Mn and B'-site Re ions,
and Mn and Re are AFM coupled. On account of the localized
3d orbit, the FM intersite superexcharge interaction between
Mn and Co is supposed to play a role, thus competing with the
AFM intrasite couplings. It therefore explains that Co and Mn
hold considerable canted spins, whereas the spin of Re almost
maintains the antiparallel alignment as listed in Table 1.

We further investigated the transport properties of MCRO.
As shown in Figure 8a, the electrical resistivity increases with
cooling, exceeding the measuring range (10° Q cm) below 80
K, indicating either semiconductive or insulative behavior. The
temperature-dependent electrical resistivity can be well fitted
with the thermal activation model within the temperature
range 260—350 K with the formula p = p, X exp(E,/kgT),
where p, and E, represent the residual resistance and activation
energy, respectively, and kg is the Boltzmann constant. This
demonstrates that the MCRO is a semiconductor. The
obtained energy gap from the fitting is E, = 2E, = 0.29 eV,
and the residual resistance is 0.11 Q cm.

The canted AFM structure with a considerable net magnetic
moment allows MCRO to be utilized as high-speed spin
filtering by means of the TMR mechanism through magnetic
domains and grain boundaries of polycrystalline MCRO.™"* As
displayed in Figure 8b, at 150 K (>Ty), the MR of MCRO is
almost independent of the magnetic field, in agreement with a
paramagnetic state. Note that the slight decrease in MR is
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Figure 8. (a) Temperature-dependent electrical resistivity of MCRO.
The inset displays the experimental data (black circles) and the
thermal activation model fitting with formula p = p, X exp(E,/ksT) in
the temperature range 260—350 K. (b) Field-dependent magneto-
resistances of MCRO at 150 and 80 K. The inset depicts the region of
+2 T.

caused by some extrinsic effects such as short-range magnetic
correlations. On the other hand, at 80 K (<Ty), the MR
increases to positive values under small magnetic field and then
decreases to negative values upon further magnetic field
increase and is accompanied by a prominent coercivity. This
butterfly-shaped MR is reminiscent of the spin-valve-type
transport mechanism, which is in accordance with the tunnel
effect between multilayer junctions and/or grain bounda-

es.' 7% The MR reaches 8% at 80 K and 7 T and
depends linearly on the applied magnetic field above 2 T. Note
that the electrical resistivity exceeds the measuring range below
80 K. To take into consideration of the large coercivity at 2 K
which can lead to a strong pining effect of the spins,17 we thus
speculate a much larger MR at lower temperatures for a more
conductive MCRO sample through disordering, doping, and/
or oxygen vacancies.

B CONCLUSIONS

In summary, the transition-metal-only double perovskite oxide
Mn,CoReOy4 was studied by element-selective X-ray absorp-
tion spectroscopy. The valence states of Mn**/Co**/Re®* were
experimentally determined. An internal magnetic field against
with the applied magnetic field was obtained, providing a
microscopic insight of the intrasite antiferromagnetic cou-
plings. Nevertheless, X-ray magnetic circular dichroic measure-
ments manifest that all the Mn, Co, and Re spins are canted
and parallel with each other, and particularly, the 3d Mn and
Co cations hold considerable canting moments, which can be
ascribed to the competition between the intra- and intersites
magnetic interactions. Moreover, a spin-valve-type magneto-
resistance was observed below Ty, which results from the spin-
valve-type tunneling through the grain boundaries. The
concurrence of the antiferromagnetic nature and the magneto-
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resistance effect makes Mn,CoReOg a promising candidate for
high-speed and energy-saving spintronics applications.
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