Supporting Information for Publication A-Site and B-Site Charge Orderings in an *s*-*d* Level Controlled Perovskite Oxide PbCoO₃

Yuki Sakai,[†] Junye Yang,^{‡,}

Runze Yu,^{§,}

Hajime Hojo,^{§,} Ikuya Yamada,[∥] Ping Miao,^{⊥, ⊲} Sanghyun Lee,[⊥] Shuki Torii,[⊥]Takashi Kamiyama,^{⊥,#} Marjana Lezăić,[∇] Gustav Bihlmayer,[∇] Masaichiro Mizumaki,[¶] Jun Komiyama,[⊗] Takashi Mizokawa,[□] Hajime Yamamoto,[§] Takumi Nishikubo,[§] Yuichiro Hattori,[§] Kengo Oka,[●] Yunyu Yin,[‡] Jianhong Dai,[‡] Wenmin Li,[‡] Shigenori Ueda,^{○, ●} Akihisa Aimi,^{△, ●} Daisuke Mori,[△] Yoshiyuki Inaguma,[△] Zhiwei Hu,[▲] Takayuki Uozumi,[♥] Changqing Jin,^{‡,○,} [®] Youwen Long,^{*,‡,○} and Masaki Azuma^{*,§}

[†]Kanagawa Academy of Science and Technology, KSP, 3-2-1 Sakado, Takatsu-ku, Kawasaki City, Kanagawa 213-0012, Japan [‡]Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China [§]Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan ¹Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), 203-1, Tokai-mura, Ibaraki 319-1106, Japan [#]Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), 203-1, Tokai-mura, Ibaraki 319-1106. Japan [∇]Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich 52425, Germany [¶]Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-gun, Hyogo 679-5198, Japan [®]Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan ^oQuantum Beam Unit, National Institute for Materials Science, Sengen, Tsukuba 305-0047, Japan [•]Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148, Japan ^ADepartment of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan ^AMax-Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan ^oCollaborative Innovation Center of Quantum Matter, Beijing 100190, China *School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

Corresponding Authors*

* ywlong@iphy.ac.cn

* <u>mazuma@msl.titech.ac.jp</u>

Present Addresses

Laboratory for Scientific Developments and Novel Materials, Paul Scherrer Institut, WLGA/U125, 5232 Villigen PSI,
 Schweiz *Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New
 York 11973, United States *Department of Energy and Material Science, Kyushu University, Kasuga 816–8580, Japan
 *Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States *Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278–8510, Japan

Supplementary Figures

Figure S1 ED patterns along the [001], [011], and [111] zone axis at RT. The reflection conditions of okl (k + l = 2n), *hhl* (any), and ool (l = 2n) indicated the *Pn*-3 space group.

Figure S2 The magnified view of NPD patterns at RT. (11) super lattice reflection which is characteristic for *Pn*-3 structure is also observed. The tick marks correspond to the positions of Bragg reflections of the *Pn*-3 cubic phase (red), a $Pb_3(CO_3)_2(OH)_2$ impurity (blue). An asterisk indicates the diffraction from unknown impurity.

Supplementary tables

Table S1 Comparison of the reliability factors in the Rietveld analysis of SXRD with respect to the cubic perovskite structures. Pn-3(U_{aniso}) indicate the Pn-3 structure model using anisotropic atomic displacement parameters in A'-site.

S. G.	Pm-3m	Fm-3m	lm-3	Pn-3	Pn-3(U _{aniso})
$R_{ m wp}$ (%)	12.34	11.98	8.01	7.92	5.09
R _B (%)	13.57	12.71	4.74	4.67	3.85
S	6.80	6.61	4.42	4.36	2.83

Table S₂ Structural parameters of PbCoO₃ refined from SXRD patterns using the *Pn*-3 quadruple perovskite structure model.

	site	g	Х	У	Z	<i>U_{iso}</i> (×10 ⁻² Å ²)
Pb1	2a	1	1/2	1/2	1/2	0.55(3)
Pb2	6d	1	1/2	0	0	3.01*
Co1	4b	1	1/4	1/4	1/4	0 72(2)
Co2	4c	1	3/4	3/4	3/4	0.72(2)
0	24h	1	0.509(2)	0.316(1)	0.203(1)	1.27

Space group *Pn*-3 (No. 201), *Z* = 2, *a* = 7.64998(4) Å, *V* = 447.694(4) Å³. * Equivalent isotropic atomic displacement parameters. Anisotropic atomic displacement parameters of Pb2 atom: $U_{11} = 1.76(8) \times 10^{-2} \text{ Å}^2$, $U_{22} = 6.40(9) \times 10^{-2} \text{ Å}^2$, $U_{33} = 0.86(6) \times 10^{-2} \text{ Å}^2$. The isotropic atomic displacement parameter of oxygen was fixed.

Table S₃ Structural parameters of the calculated ground state of PbCoO₃ having *R*-3 symmetry with a lattice parameter a = 7.683 Å and a rhombohedral angle of 90.717°.

	Site	X	У	Z
Pb ²⁺	2c	0.73999	0.73999	0.73999
Pb ⁴⁺	6 <i>f</i>	0.25625	0.74942	0.20870
Co ³⁺	3d	¹ / ₂	0	0
Co ³⁺	1 <i>b</i>	¹ / ₂	¹ / ₂	¹ / ₂
Co ²⁺	3e	0	¹ / ₂	¹ / ₂
Co ²⁺	1 <i>a</i>	0	0	0
0	6 <i>f</i>	0.43979	0.75994	-0.04067
0	6 <i>f</i>	0.45379	0.73917	0.56056
0	6 <i>f</i>	0.06983	0.73791	-0.04065
0	6 <i>f</i>	0.03476	0.76157	0.56608

Table S4 Structural parameters of the calculated PbCoO₃ having *Pn*-3 symmetry with a lattice parameter *a* = 7.65970 Å.

Atom	site	x	У	Z
Pb1	2a	1/2	1/2	1/2
Pb2	6 <i>d</i>	1/2	0	0
Co1	4 <i>b</i>	1/4	1/4	1/4
Co2	4 <i>c</i>	3/4	3/4	3/4
0	24h	0.48962	0.29980	0.19779

Table S₅ Comparison of the energies of several referent structures of PbCoO₃ with respect to the calculated ground state structure with R-3 symmetry, expressed in eV/f.u. for a ferromagnetic spin alignment. The f.u. used in all the calculations was unified to PbCoO₃ to compare the energies between different structures.

Pm-3m	Fm-3m	Im-3	Pn-3	<i>R</i> -3
4.87	0.83	0.31	0.06	0

Table S6 Fitting results for Pb 4f HAXPES of PbCoO₃, PbCrO₃, PbNiO₃, and PbTiO₃.

Sample	Peak	Binding en- ergy (eV)	Peak area	FWHM (eV)	Pb ⁴⁺ area/Pb ²⁺ area
PbCoO ₃	Pb ⁴⁺ 4f _{7/2}	137.44(0)	0.58(1)	0.69(0)	1.45
	Pb ²⁺ 4f _{7/2}	137.98(1)	0.40(1)	1.75(2)	
	Pb ⁴⁺ 4f _{5/2}	142.30(0)	0.47(1)	0.69(1)	1.34
	Pb ²⁺ 4f _{5/2}	142.78(2)	0.35(1)	1.88(2)	
PbCrO ₃	Pb ⁴⁺ 4f _{7/2}	137.34(0)	0.50(2)	0.74(1)	0.67
	Pb ²⁺ 4f _{7/2}	137.93(2)	0.75(2)	1.53(2)	
	Pb ⁴⁺ 4f _{5/2}	142.19(0)	0.40(2)	0.76(2)	0.66
	Pb ²⁺ 4f _{5/2}	142.81(2)	0.61(2)	1.56(2)	
PbNiO ₃	Pb ⁴⁺ 4f _{7/2}	137.29(1)	1.13(1)	1.11(1)	
	Pb ⁴⁺ 4f _{5/2}	142.15(1)	0.94(1)	1.13(1)	
PbTiO ₃	Pb ²⁺ 4f _{7/2}	138.91(1)	1.22(2)	1.38(2)	
	Pb ²⁺ 4f _{5/2}	143.76(1)	1.01(2)	1.43(3)	