## Supporting Information for

## Magnetic-Field Controllable Displacement-Type Ferroelectricity Driven by Off-Center Fe<sup>2+</sup> Ions in CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> Perovskite

Dabiao Lu,<sup>1,2</sup> Denis Sheptyakov,<sup>3</sup> Yingying Cao,<sup>1,2</sup> Haoting Zhao,<sup>1,2</sup> Jie Zhang,<sup>1,2</sup> Maocai Pi,<sup>1,2</sup> Xubin Ye,<sup>1</sup> Zhehong Liu,<sup>1</sup> Xueqiang Zhang,<sup>1</sup> Zhao Pan,<sup>1</sup> Xingxing Jiang,<sup>4</sup> Zhiwei Hu,<sup>5</sup> Yi-feng Yang,<sup>1,2,6</sup> Pu Yu,<sup>7</sup> and Youwen Long<sup>1,2,6\*</sup>

<sup>1</sup>Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

<sup>2</sup>School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

<sup>3</sup>Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institut (PSI), Forschungsstrasse 111, CH-5232 Villigen, Switzerland

<sup>4</sup>Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

<sup>5</sup>Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany <sup>6</sup>Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China <sup>7</sup>State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China

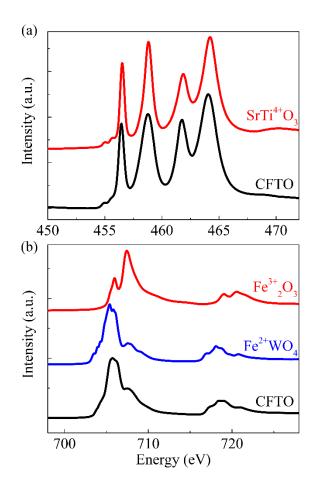
\*Corresponding email: ywlong@iphy.ac.cn

| <i>a</i> (Å)                                | 7.470873(2) |
|---------------------------------------------|-------------|
| Oy                                          | 0.2984(1)   |
| Oz                                          | 0.1887(1)   |
| U <sub>iso</sub> (Ca) (100×Å <sup>2</sup> ) | 1.40(4)     |
| $U_{iso}$ (Fe) (100×Å <sup>2</sup> )        | 2.54(2)     |
| U <sub>iso</sub> (Ti) (100×Å <sup>2</sup> ) | 1.09(1)     |
| U <sub>iso</sub> (O) (100×Å <sup>2</sup> )  | 0.94(1)     |
| Ca-O (×12) (Å)                              | 2.638(1)    |
| Fe-O (×4) (Å)                               | 2.0627(6)   |
|                                             | 2.7707(6)   |
|                                             | 3.2217(6)   |
| Ti-O (×6) (Å)                               | 1.9568(2)   |
| Ti-O-Ti (°)                                 | 145.35(4)   |
| Fe-O-Ti (°)                                 | 107.12(2)   |
| BVS(Ca)                                     | 1.96        |
| BVS(Fe)                                     | 1.96        |
| BVS(Ti)                                     | 4.09        |
| R <sub>wp</sub> (%)                         | 3.23        |
| <i>R</i> <sub>p</sub> (%)                   | 2.19        |
|                                             |             |

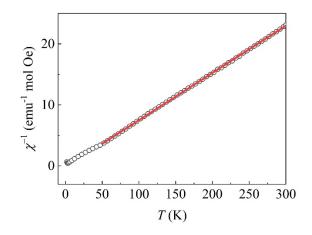
Table S1. Refined structure parameters of CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> based on the SXRD data collected at 290 K.

The space group is *Im*-3 (No. 204), with atomic positions: Ca 2a(0, 0, 0), Fe 6b(0, 0.5, 0.5), Ti 8c(0.25, 0.25, 0.25), and O 24g(x, y, 0). The BVS values are calculated by using the formula  $\sum_{i} \exp[(r_0 - r_i)/0.37]$ , where  $r_i$  is the bond length, and  $r_0$  is a constant for a specific ion. Here  $r_0$  is 1.967 for Ca, 1.734 for Fe and 1.815 for Ti.

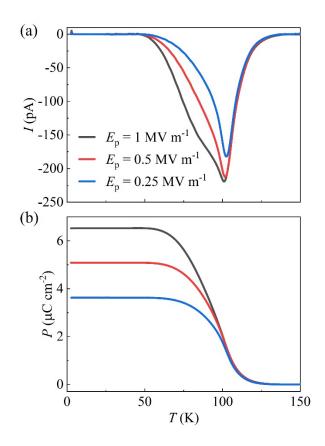
| Space group | $\chi^2$ | $R_{\mathrm{wp}}$ (%) | <i>R</i> <sub>p</sub> (%) |
|-------------|----------|-----------------------|---------------------------|
| Im-3        | 0.1256   | 4.54                  | 2.87                      |
| R3          | 0.0670   | 4.09                  | 2.46                      |
| Imm2        | 0.0779   | 4.06                  | 2.56                      |


**Table S2**. Comparison of refined satisfactory goodness-of-fit parameters based on theSXRD pattern collected at 5 K using different space groups for  $CaFe_3Ti_4O_{12}$ 

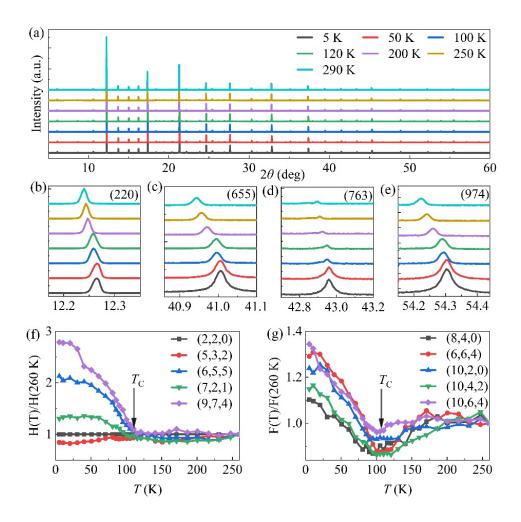
| Atom | site       | X         | У          | Z          | Uiso (100×Å <sup>2</sup> ) |
|------|------------|-----------|------------|------------|----------------------------|
| Ca   | 3 <i>a</i> | 0         | 0          | -0.0050(8) | 0.87(2)                    |
| Fe   | 9 <i>b</i> | 0.1556(3) | 0.3378(3)  | 0.3312(4)  | 3.62(1)                    |
| Ti1  | 3 <i>a</i> | 0         | 0          | 0.4951(7)  | 0.30(1)                    |
| Ti2  | 9 <i>b</i> | 0.5008(2) | -0.0024(4) | 0.4894(4)  | 2.13(1)                    |
| 01   | 9 <i>b</i> | 0.2271(7) | 0.2641(5)  | 0.0892(8)  | 0.93(5)                    |
| 02   | 9 <i>b</i> | 0.1551(4) | 0.1693(6)  | 0.6904(7)  | 1.22(7)                    |
| 03   | 9 <i>b</i> | 0.1693(5) | 0.0308(4)  | 0.3424(9)  | 0.11(4)                    |
| 04   | 9 <i>b</i> | 0.1208(4) | 0.4189(6)  | 0.6421(7)  | 4.72(9)                    |


Table S3. Refined structure parameters of CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> based on the SXRD data collected at 5 K.

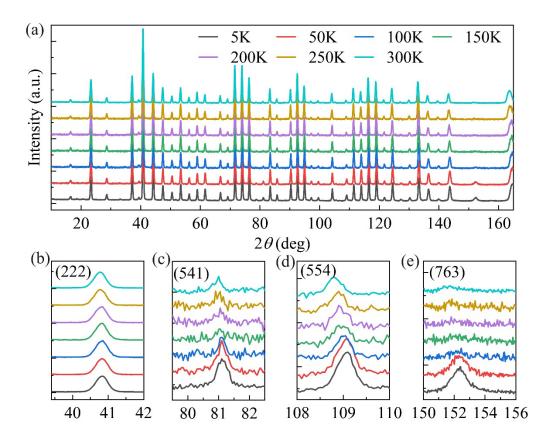
Space group: R3 (No. 146), a = 10.55453(3) Å, c = 6.46314(4) Å,  $R_{wp} = 4.09\%$ ,  $R_p = 4.09\%$ 


2.46%.

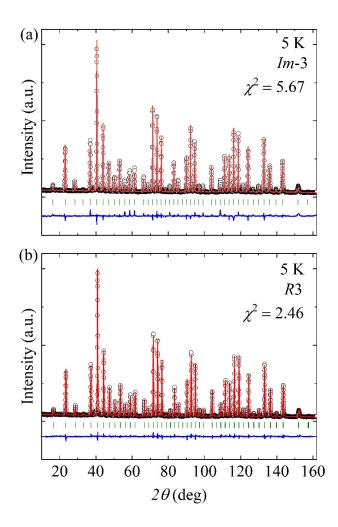



**Figure S1.** X-ray absorption spectroscopy for CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> (CFTO) measured at room temperature. (a) Ti- $L_{2,3}$  edges of CFTO and reference SrTiO<sub>3</sub>. Their similar spectral shapes and energy positions confirm the Ti<sup>4+</sup> charge state in CFTO. (b) Fe- $L_{2,3}$  edges of CFTO and two references Fe<sub>2</sub>O<sub>3</sub> and FeWO<sub>4</sub>[1] with Fe<sup>3+</sup> and Fe<sup>2+</sup> charge states, respectively. The similar energy positions and peak profiles between CFTO and FeWO<sub>4</sub> confirm the Fe<sup>2+</sup> charge state in CFTO.

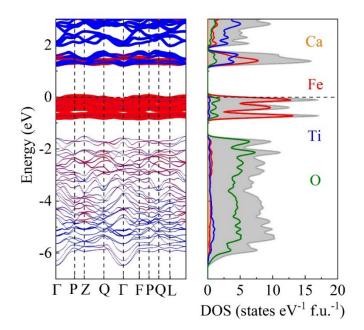



**Figure S2.** The Curie–Weiss fitting for the zero-field cooling (ZFC) data of  $\chi^{-1}$  above 50 K using the function  $\chi^{-1} = (T - \theta) / C$  for CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>. The absolute value of the fitted Weiss temperature  $\theta$  (= -3.19 K) is comparable to  $T_N \approx 3.1$  K, and the negative sign agrees with the antiferromagnetic interaction. According to the fitted Curie Constant *C* (= 12.91 emu K Oe<sup>-1</sup> mol<sup>-1</sup>), the effective magnetic moment is calculated as 10.13  $\mu_B$  f.u.<sup>-1</sup>. This value is somewhat larger than the theoretical one (8.57  $\mu_B$  f.u.<sup>-1</sup>), if we only consider the contribution of the spin moment for a high-spin Fe<sup>2+</sup>. The possible reasons are the presence of some magnetic moments at the oxygen sites owing to the presence of strong Fe–O covalent effects [2] and existence of the orbital contribution as proposed to explain the higher-than-expected effective Co<sup>2+</sup> moment in isostructural CaCo<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> [3].




**Figure S3.** Temperature dependent (a) pyroelectric current and (b) corresponding polarization measured under different poling fields  $E_p$ . The pyroelectric current and the polarization increase with increasing poling fields, implying the polarization is not saturated, consistent with the PE loop results.




**Figure S4.** (a) SXRD patterns measured at some representative temperatures for  $CaFe_3Ti_4O_{12}$ . (b-e) Enlarge view of SXRD patterns for some characteristic diffraction peaks. Temperature dependence of, (f) peak height H(T), (g) full width at half maximum (FWHM) F(T) of some characteristic diffraction peaks.



**Figure S5.** (a) NPD patterns measured at some representative temperatures with a wavelength of 1.494 Å for CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>. (b-e) Enlarge view of NPD patterns for some characteristic diffraction peaks. The relative intensities of some diffraction peaks increase remarkably below  $T_{\rm C}$ , implying a structural transition.



**Figure S6.** Rietveld refinement results based on the NPD data collected at 5 K using the (a) *Im*-3 and (b) *R*3 space group. Observed (black circles), calculated (red line), and difference (blue line) are illustrated. The green ticks indicate the allowed Bragg reflections. Compared with the refinement quality by using *Im*-3 space group, significant improvement can be achieved by using *R*3 space group.



**Figure S7.** First-principles calculation results for the band structures and density of states (DOS) for CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> with the polarized *R*3 symmetry. The total DOS (light gray) and partial DOS of Ca (orange curves), Fe (red curves), Ti (blue curves), and O (green curves) are all shown for comparison.

## Reference

- Maignan A., Schmidt M., Prots Y. *et al.* FeWO<sub>4</sub> Single Crystals: Structure, Oxidation States, and Magnetic and Transport Properties. *Chem. Mater.* 2022; 34; 789-97.
- Li H., Lv S., Han L. *et al.* First-principles investigation of magnetic coupling mechanism in A-site-ordered perovskite CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>. *Comp. Mater. Sci.* 2012; **53**: 329-32.
- Amano P. M., Denis R. F., Koo H.-J. *et al.* Orthogonal antiferromagnetism to canted ferromagnetism in CaCo<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> quadruple perovskite driven by underlying kagome lattices. *Commun. Mater.* 2022; 3: 51.