nature

angles of LaCu₃Fe₄O₁₂ from the Rietveld analysis of SXRD data at 100, 300 and 450 K. Space group is $Im\bar{3}$ (Z = 2, No. 204). The atomic positions are 2a(0, 0, 0), for La; 6b(0, 0.5, 0.5), for Cu; 8c(0.25, 0.25, 0.25), for Fe and 24g(x, y, 0), for O. Numbers in parentheses are standard deviations of the last significant digit.

<i>T</i> (K)	100	300	450
<i>a</i> (Å)	7.42455(5)	7.43283(4)	7.41420(6)
$V(\text{\AA}^3)$	409.270(8)	410.641(7)	407.561(9)
<i>x</i> (O)	0.3112(4)	0.3111(3)	0.3070(4)
y (O)	0.1705(4)	0.1711(4)	0.1764(4)
$U_{\rm iso}({\rm La}) (100 \times {\rm \AA}^2)$	0.01(1)	0.26(2)	0.42(2)
$U_{\rm iso}({\rm Cu}) (100 \times {\rm \AA}^2)$	0.82(2)	1.09(2)	1.48(3)
$U_{\rm iso}({\rm Fe}) (100 \times {\rm \AA}^2)$	0.07(1)	0.14 (2)	0.22(2)
$U_{\rm iso}({\rm O})~(100{\times}{\rm \AA}^2)$	0.32(7)	0.36(7)	0.67(8)
La-O (Å) (×12)	2.634(3)	2.639(3)	2.625(3)
Cu-O (Å) (×4)	1.889(3)	1.895(2)	1.937(3)
(×4)	2.820(4)	2.819(3)	2.780(3)
(×4)	3.365(5)	3.364(6)	3.326(4)
Fe-O (Å) (×6)	2.0000(10)	2.0007(9)	1.9778(10)
Fe-O-Fe (°)	136.3(2)	136.5(1)	139.2(2)
R_{p} (%)	5.78	4.70	5.42
$R_{ m wp}$ (%)	7.40	6.70	7.71

Table S2: Bond valence sum values (V_i) for Cu and Fe sites in LaCu₃Fe₄O₁₂ at 100, 300, and 450 K. The V_i is calculated using the formula $V_i = \sum_j S_{ij}$, and $S_{ij} = \exp[(r_0 - r_{ij})/0.37)]$. The following r_0 values were used: 1.739 (ref. 29) and 1.649 (ref. 30) for Cu³⁺ and Cu²⁺, respectively, with twelve coordinated oxygen atoms; 1.751 (ref. 31) and 1.772 (ref. 32) for Fe³⁺ and Fe^{3.75+}, respectively, for six coordinated oxygen atoms. For the Fe^{3.75+} site at 450 K, the r_0 of Fe⁴⁺ ion was used for the calculation.

<i>T</i> (K)	100	300	450
Cu	2.93	2.90	2.06
Fe	3.06	3.05	3.44

- Mahapatra, S. *et al.* Structural, spectroscopic, and theoretical characterization of bis(μ-oxo)dicopper complexes, novel intermediates in copper-mediated dioxygen activation. *J. Am. Chem. Soc.* **118**, 11555-11574 (1996).
- Liu, W. & Thorp, H. H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. *Inorg. Chem.* 32, 4102-4105 (1993).
- Kanowitz, S. M. & Palenik, G. J. Bond valence sums in coordination chemistry using oxidation-state-independent *R*₀ values. A simple method for calculating the oxidation state of iron in Fe–O complexes. *Inorg. Chem.* **37**, 2086-2088 (1998).
- Woodward, P. M., Cox, D. E., Moshopoulou, E., Sleight, A. W. & Morimoto, S. Structural studies of charge disproportionation and magnetic order in CaFeO₃. *Phys. Rev. B* 62, 844-855 (2000).

Figure S1: SXRD pattern of LaCu₃Fe₄O₁₂ at 300 K and the Rietveld refinement profile. The observed (\bigcirc), calculated (—), and difference (—) patterns are shown. The bottom-row ticks mark the positions of allowed Bragg reflections of LaCu₃Fe₄O₁₂. The sample contains small amount of impurities: 0.4 *wt*% LaFeO₃ (top-row ticks) and 1.6 *wt*% α -Fe₂O₃ (middlerow ticks).

Figure S2: Results of thermogravimetry (TG) and differential thermal analysis (DTA). The sharp peak at 393 K in the DTA curve shows a phase transition, and at temperatures above ~820 K the sample decomposed into LaFeO₃, CuFe₂O₄ and CuO (identified by X-ray diffraction). The TG loss (~3.25%) is consistent with the amount of released oxygen (3.22%) expected from the reaction LaCu₃Fe₄O₁₂ \rightarrow LaFeO₃+ 3/2CuFe₂O₄+ 3/2CuO + 3/4O₂, confirming the oxygen stoichiometry of LaCu₃Fe₄O₁₂.