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ABSTRACT: A B-site ordered double perovskite oxide Cd2CrSbO6 was
synthesized under high-pressure and high-temperature conditions. The
compound crystallizes to a monoclinic structure with a space group of
P21/n. The charge configuration is confirmed to be that of Cd2+/Cr3+/
Sb5+. The magnetic Cr3+ ions form a tetrahedral structural frustrated
lattice, while a long-range ferromagnetic phase transition is found to
occur at TC = 16.5 K arising from the superexchange interaction via the
Cr−O−Cd−O−Cr pathway. Electrical transport measurements indicate
that Cd2CrSbO6 is an insulator that can be described by the Mott 3D
variable range hopping mechanism. First-principles calculations repro-
duce well the ferromagnetic and insulating ground state of Cd2CrSbO6
with an energy band gap of 1.55 eV. The intrinsic ferromagnetic
insulating nature qualifies Cd2CrSbO6 as a promising candidate for possible spintronics applications.

1. INTRODUCTION
B-site ordered double perovskite oxide with the chemical
formula A2BB′O6 derivates from the simple ABO3 perovskite
oxide with two different cations occupying at the B-site in a
rock salt fashion.1 The flexibility of the site occupancy enables
it to exhibit a wide variety of physical properties, such as giant
magnetoresistance,2 multiferroicity,3 exchange bias,4 and high-
TC ferromagnetism.5 Recently, the B-site ordered double
perovskite oxide with only one magnetic cation residing at the
B-site has attracted much attention, owing to the subtle
magnetic ground state. In such a structure, the sole magnetic
B-site cation is located in an edge-shared tetrahedral lattice, as
shown in Figure 1a. This geometric magnetic frustration
usually prevents the formation of long-range magnetic
order.6−19

Exceptionally, A2CrSbO6 (A = Sr and Ca) provides rare
examples that exhibit long-range spin order in an edge-shared
tetrahedral lattice with space group P21/n, as depicted in
Figure 1a,b. Specifically, Sr2CrSbO6 experiences a long-range
antiferromagnetic (AFM) transition at TN = 12 K.20 However,
Ca2CrSbO6 shows a long-range ferromagnetic (FM) order at
TC = 13 K.21 Theoretical calculations indicated that the tilting
of the Cr/SbO6 octahedra is critical for the formation of long-
range spin order, and a change in sign of the nearest-neighbor
Cr−Cr magnetic coupling was identified with Cr−O−Sb angle
decreasing from 169.2 to 152.5°, which is responsible for the
AFM to FM transition from Sr2CrSbO6 to Ca2CrSbO6.22

Interestingly, a recent study indicates that for double
perovskite oxides, the frustration factor ( f = |θ|/TN, where θ
is the Weiss temperature and TN is the Neél temperature) is
linearly dependent on the tolerance factor.23 Thus, the
stabilization of the long-range spin ordering with an enhanced
critical temperature is expected to occur in the A2CrSbO6
system if a smaller-size cation occupies the A-site.

In this paper, we report a novel B-site ordered double
perovskite oxide Cd2CrSbO6 (CCSO) synthesized using high-
pressure and high-temperature techniques, which enable a
smaller cation of Cd occupying at the A-site, thus obtaining a
crystal structure with more heavily tilted BO6 octahedra.4,24−26

Similar to Ca/Sr2CrSbO6, CCSO also crystallizes to a
monoclinic P21/n space group with valence states of Cd2+/
Cr3+/Sb5+. However, an enhanced TC of 16.5 K was found to
occur in CCSO, resulting from heavier Cr/SbO6 octahedral
tilting with a smaller Cr−O−Sb bond angle of 147.5°. An
insulating state was also identified by electrical transport
measurements. First-principles calculations further confirmed
the insulating ferromagnetic state of CCSO with a spin
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moment of 3.0 μB/Cr3+ and an energy gap of 1.55 eV, making
CCSO promising for possible spintronics applications.27−30

2. EXPERIMENTAL DETAILS
High purity (>99.9%) CdO, Cr2O3, and Sb2O5 with a mole ratio of
4:1:1 were thoroughly ground with an agate mortar and then
encapsulated into a platinum capsule of 3 mm diameter and 4 mm
length. These procedures were carried out in a glovebox full of argon
due to the toxicity of CdO and the chemical instability of CdO and
Sb2O5 in air. The capsule was then processed with a cubic-anvil-type
high-pressure apparatus. The sample was slowly pressurized to 9 GPa
and then heated at 1375 K for 30 min. After the high-pressure
sintering process, the temperature was quenched to room temperature
and then the pressure was slowly released to ambient pressure within
10 h.

Powder synchrotron X-ray diffraction (SXRD) was collected at the
BL02B2 (λ = 0.65 Å) beamline of SPring-8. The 2θ scan was from 5
to 50° with a step of 0.006°. The Rietveld refinement was performed
using the GSAS software.31 The X-ray absorption spectra (XAS) at
the Cr-L2,3 edges were obtained at room temperature at the TLS11A

beamline of the National Synchrotron Radiation Research Center
(NSRRC), via total electron yield mode. The magnetic susceptibility
and isothermal magnetization were performed with a Quantum
Design superconducting quantum interference device magnetometer
(MPMS-VSM). For the magnetic susceptibility measurements, both
zero-field-cooling (ZFC) and field-cooling (FC) modes were adopted
under a magnetic field of 0.1 T. The resistivity and specific heat were
measured using a Quantum Design physical property measurement
system (PPMS-9T).

First-principles calculations were performed based on the density
functional theory (DFT) within the Vienna ab initio simulation
package (VASP),32−34 with the projector augmented wave (PAW)
potentials35 to describe the electron−ionic core interaction. After
testing different electron correlation methods and the onsite Coulomb
interaction for the localized 3d orbitals, the Perdew−Burke−
Ernzerhof formulation for solid (PBEsol)36 of the generalized gradient
approximation (GGA) was chosen to describe the exchange−
correlation interaction of electrons. The effective Hubbard U = 5
eV was adopted for the Cr d orbital.22 The wave functions are
expanded in a plane wave basis set with an energy cutoff of 520 eV.
The force on each ion is converged to be less than 0.001 eV/Å, and a
precision of 10−6 eV is adopted to minimize the total energy of the
system. A 7 × 7 × 5 k-mesh in the Monkhorst−Park scheme in
reciprocal space was used to ensure convergence for the total energy
self-consistent calculations. The Cd 4d105s2, Sb 5s25p3, Cr 3d54s1, and
O 2s22p4 electrons were treated as valence electrons. VESTA software
was used for visualization of crystal structures.37

3. RESULTS AND DISCUSSION
Figure 1c shows the SXRD pattern and the Rietveld
refinements of CCSO. The SXRD data can be well refined
using the monoclinic P21/n (No. 14) space group with a =
5.3496(3) Å, b = 5.4498(3) Å, c = 7.6668(4) Å, and β =
90.157(1)°, as displayed in Figure 1b. The (011) Bragg peak
(inset of Figure 1c) clearly indicates the rock salt order of Cr
and Sb at the B and B′ sites, respectively. The refined
parameters are listed in Table 1. No visible antisite occupation
for Cr/Sb was found to occur. Via the bond valence sum
(BVS) calculations,38 the valence states of 2.01, 2.99, and 4.74
were obtained for Cd, Cr, and Sb, respectively, suggesting the
charge combination to be Cd2+

2Cr3+Sb5+O6, in agreement with
charge conservation and the XAS measurements shown below.

It is well-known that XAS at the L2,3 edges are very sensitive
to the valence states and local environments for 3d transition
metals. For an opened d shell, an increase of the valence by one
will lead to a 1−2 eV shift of the white line of the X-ray
absorption spectrum toward higher photon energies, accom-
panied by a significant variation of the spectral line shape.5,26,39

Figure 1. (a) Edge-shared tetrahedral lattice of Cr in CCSO. (b)
Crystal structure of CCSO composed of alternating CrO6 and SbO6
octahedra by sharing corner O atoms. (c) SXRD pattern and Rietveld
refinement of CCSO. Black circles, red lines, and blue lines indicate
the observed, calculated, and difference, respectively. Magenta ticks
indicate the allowed Bragg reflections for space group P21/n. Inset
displays the pattern near the (011) peak. Asterisk indicates minor
unknown impurities.

Table 1. Rietveld Refinement Results of CCSOa

atom site x y z Uiso (100 × Å2)

Cd 4e 0.9917(2) 0.0408(1) 0.2511(1) 0.73(1)
Cr 2d 0.5 0 0 0.12(4)
Sb 2c 0 0.5 0 0.45(1)
O1 4e 0.0966(7) 0.4618(7) 0.2459(7) 0.15(10)
O2 4e 0.6968(9) 0.2953(9) 0.0486(8) 0.57(16)
O3 4e 0.1985(9) 0.1910(9) 0.9467(8) 0.25(15)
Cd−O (Å) 2.363(4); 2.244(4); 2.610(5); 2.274(5); 2.681(6); 2.712(6); 2.219(5); 2.619(5); BVS: 2.01
Cr−O (Å) 2.028(5)(×2); 1.958(5)(×2); 1.962(5)(×2); BVS: 2.99
Sb−O (Å) 1.964(5)(×2); 2.004(5)(×2); 2.033(5)(×2); BVS: 4.74
∠Cr−O−Sb (°) 147.6(2); 148.8(3); 145.8(3)

aSpace group is P21/n (No. 14) with lattice parameters of a = 5.3496(3) Å, b = 5.4498(3) Å, c = 7.6668(4) Å, and β = 90.157(1)°. Rwp = 4.35%, Rp
= 3.21%. BVS values (Vi) were calculated using the formula Vi = ΣjSij, and Sij = exp[(r0−rij)/0.37] with r0 = 1.904 Å for Cd, r0 = 1.724 Å for Cr and
r0 = 1.912 Å for Sb.
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To further ascertain the valence state for Cr, XAS measure-
ments at the Cr-L2,3 edges were performed. As shown in Figure
2, one finds that the white line shape and peak position of the
Cr-L2,3 of CCSO resemble those of the reference Cr3+

2O3,
confirming the presence of the Cr3+ state in CCSO.

Now, we turn to investigate the magnetic properties of
CCSO. Figure 3a depicts the temperature-dependent magnetic

susceptibility measured at 0.1 T with both ZFC and FC modes
between 2 and 320 K. One finds that the ZFC and FC curves
almost overlap, and both curves experience a sharp elevation at
a critical temperature TC = 16.5 K, which can be clearly
identified by a sharp peak of the first-order derivative ZFC
curve, as shown in the inset of Figure 3a. Since there is only

one type of magnetic ion Cr3+ occupying one Wyckoff position
in CCSO, a ferromagnetic state below TC is assigned. As
shown in Figure 3a, the reciprocal magnetic susceptibility (χ)
can be well fitted with the Curie−Weiss law at temperatures
above 40 K using the formula (χ − χ0)−1 = (T − θ)/C, yielding
the Weiss temperature θ = 16.3 K. The positive θ indicates the
dominated FM interactions in CCSO, and the value of θ is in
agreement with the experimental TC = 16.5 K. On the basis of
the fitted Curie constant C = 1.478 emu mol−1, the effective
magnetic moment is calculated to be μeff = 3.44 μB f.u.−1 (=

C8 ). This value is comparable with the spin-only theoretical
value of 3.87 μB f.u.−1 (S = 3/2 for Cr3+). Figure 3b displays
the field-dependent magnetization measured at different
temperatures. The linear M(H) curve above TC is indicative
of the paramagnetic state. Below TC, e.g., at 2 K, a saturated
magnetic moment of 2.05 μB f.u.−1 is observed, which is smaller
than the theoretical value (3 μB/Cr3+). This discrepancy may
be attributed to the noncolinear FM alignment of Cr3+ spins
and/or the presence of some antiphase boundaries as often
observed in double perovskite oxides.1

We further investigated the specific heat of CCSO. As shown
in Figure 4a, with decreasing temperature to TC, the specific

heat shows a sharp λ-type anomaly. Additionally, when external
magnetic fields are applied, the anomaly shifts to higher
temperatures and changes to a broad hump, in accordance with
the long-range FM transition. On the other hand, as depicted
in Figure 4b, the experimental data of specific heat can be well
fitted by using the function CP = αT3/2 + βT3 below 7 K, with
fitting parameters α = 75.6 mJ mol−1 K−5/2 and β = 3.12 mJ
mol−1 K−4. Here, the T3/2 and T3 terms, respectively, indicate
the ferromagnetic excitation and phonon contributions,
whereas the absence of the temperature linear term suggests
the lack of conducting electrons. The specific heat data thus
suggest the FM insulating nature of the CCSO.

Figure 2. XAS at the Cr-L2,3 edges of CCSO. Cr2O3 was used as a
Cr3+ reference.

Figure 3. (a) Temperature-dependent magnetic susceptibility of
CCSO. Both ZFC (black line) and FC (magenta line) modes are
shown. Reciprocal magnetic susceptibility (black circles) and the
Curie−Weiss fitting (red line) above 40 K with the formula (χ −
χ0)−1 = (T − θ)/C are shown. Inset shows the first-order derivative of
the ZFC curve. (b) Field-dependent magnetization of CCSO at
selected temperatures.

Figure 4. (a) Temperature-dependent specific heat of CCSO under
selected magnetic fields. Vertical dashed line indicates TC. (b)
Experimental heat capacity below 7 K (black circles) and fitting with
formula CP = αT3/2 + βT3 (red line).
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To evaluate the magnetic entropy, as shown in Figure 5a, the
lattice contribution to the specific heat was obtained by

performing the fitting of the CP above 70 K using the
E i n s t e i n − D e b y e e q u a t i o n 4 0 , 4 1

C a x b Rd 3R
T T

T T x T T
lat

9
( / ) 0

/ e
(e 1)

( / ) e

(e 1)

x

x

T T

T T
D

3
D 4

2
E

2 E/

E/ 2= × + × ,

where R = 8.314 J mol−1 K−1 is the universal gas constant, a
and b are the number of vibrating modes per formula unit, and
TD and TE are the Debye and Einstein temperatures,
respectively. The fitting yields a = 5.3, b = 5.7, TD = 304 K,
and TE = 725 K. As shown in Figure 5b, the magnetic entropy

S TdC C
Tmag

P lat= was calculated to be 11.69 J mol−1 K−1,
in good agreement with the theoretical value R ln(2S + 1) =
11.53 J mol−1 K−1, where S = 3/2 is the spin quantum number
of Cr3+.

Figure 6 displays the temperature-dependent electrical
resistivity (ρ) of CCSO. The ρ gradually increases with
decreasing temperature, indicating an insulating or semi-
conducting feature. Furthermore, the ln ρ − T−1/4 curve was
plotted, as shown in the inset of Figure 6. Two linear regions
can be observed in 70−350 K and below TC, respectively. The
resistivity data in both temperature regions can be well fitted
using a Mott three-dimensional variable range hopping (VRH)
mechanism42 with the equation ρ = ρ0 × exp(T0/T)1/4, where
T0 represents the characteristic temperature and ρ0 is a
constant. The fitted T0 is 545 and 3960 K for the higher and
lower temperature region, respectively. The larger T0 value
below TC may be ascribed to the magnetic scattering and the
decreases in the density of states near the Fermi surface of the
insulative FM state.

To get deeper insights into the electronic structures and
magnetic properties of CCSO, first-principles theoretical
calculations were carried out based on DFT. The experimental

lattice parameters from the SXRD refinement data were used
as the initial structure, and after full relaxation, the optimized
lattice parameters are a = 5.383 Å, b = 5.492 Å, c = 7.720 Å,
and β = 90.22° for numerical calculations. After various atomic
magnetic configurations were tried, the system with the lowest
energy is the ferromagnetic state with magnetic moments in
the same direction, which is consistent with our experimental
results. As shown in Figure 7a, there is no density of electronic
state near the Fermi level, and the band gaps are 1.55 and 2.00
eV for spin-up and spin-down electrons, respectively. As
depicted in Figure 7b, the conduction band is mainly
contributed by Cr d electrons, and the valence band is a
hybrid of O p electrons and Cr d electrons. The magnetic
moment for each Cr atom is 3.030 μB based on theoretical
calculations.

To obtain further insight into the magnetic coupling in
CCSO, the strengths of the nearest neighboring exchange
interactions J1 and J3, and the next nearest neighboring
exchange interaction J2 were examined. As depicted in Figure
8a,b, the Cr−Cr distances for J1, J2, and J3 interaction are
5.400, 7.664, and 5.410 Å, respectively. The Heisenberg model
was employed to express the total energy within a 2 × 2 × 1
supercell, as a sum of a nonmagnetic part with energy E0 and
magnetic parts given by the equation, H E J S S

i j ij i j0= ·
<

. Four

magnetic configurations were constructed to find out the
system energy and FM interactions of J1 = 0.583 meV and J3 =
0.959 meV and a much weaker AFM interaction of J2 = −0.003
meV were obtained.

Figure 8c displays the 3D magnetic charge density of Cr in
CCSO, which presents a typical t2g

3 eg0 electronic structure,
where the magnetic charge isosurface around the Cr atom has
a cube-like shape, with eight angles protruding outward and six
faces recessed inward. Meanwhile, an induced magnetic
moment in the 2p state appears around the adjacent O
atom. Therefore, in the process of forming the compound,
each Cr atom loses three electrons to form the +3 valence
state. Further, the octahedral crystal field splits the 3d states of
a free Cr atom approximately into low lying t2g triplet and high
lying eg doublet for spin-up channels. According to Hund’s
rules, the remaining three electrons around Cr occupy the t2g

Figure 5. (a) Temperature-dependent specific heat of CCSO
measured at zero magnetic field (black circles) and the Einstein-
Debye fitting above 70 K (red line). (b) Temperature-dependent
magnetic specific heat and magnetic entropy of CCSO.

Figure 6. Temperature-dependent resistivity of CCSO. Inset displays
the experimental data (circles) and the fitting with a Mott three-
dimensional VRH model at temperatures below TC (red line), and
70−350 K (blue line) and its extension to TC (dashed blue line).
Vertical dashed line indicates TC.
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orbital and exhibit the same spin arrangement, as depicted in
Figure 8d.

Compared with Ca2CrSbO6, which has comparable absolute
values between J1 ∼ 0.1 meV and J2 ∼ −0.05 meV,22 a
prominent enhancement of the J1 (J3) is obtained for CCSO,
where the strength of the FM coupling is larger than that of the
AFM one by 1 order of magnitude, leading to the
enhancement of TC from 13 K in Ca2CrSbO6 to 16.5 K in
the current CCSO. It is worth noting that in similar tetrahedral
magnetic structures, for example, Sr2CaReO6,6 Sr2MgReO6,7

Sr2MnSbO6,18 and Sr2FeTaO6
19 show spin-glass behaviors at

low temperatures; Ba2LnSbO6 and Sr2LnSbO6 (Ln = Dy, Ho,
and Gd) do not form long-range magnetic ordering with
temperature down to 2 K;15 Sr2CuTeO6 has a spin-liquid-like
ground state;17 and Ba2NaOsO6,8 Ba2YMoO6,9 La2LiMoO6,9

and A2BB′O6 (A = Ba, La, B = Y, Li, B′ = Ru, Re)10−13 have
TN lower than their θ, as a result of the considerable magnetic
frustration. However, the current CCSO provides a rare
example of long-range FM order with θ being very close to TC.

Now, we discuss how the Cr/SbO6 tilting enhances the TC
and stabilizes the FM state in CCSO. According to previous
theoretical calculations,22 in Sr2CrSbO6 with slight CrO6 tilting
as characterized by the Cr−O−Sb bond angle of 169.2°, the O
2px and 2py orbitals bend toward the A-site Sr, leading to the
formation of the long-range superexchange coupling pathway
Cr−O−Sr−O−Cr. Considering the half-filled t2g state of Cr3+,
virtual hopping t2g↑-t2g↓ results in an AFM state for
Sr2CrSbO6. With CrO6 octahedra further tilting so that the
Cr−O−Sb bond angle decreases to 152.5° in Ca2CrSbO6, the
significant distortion of the Cr/SbO6 chains can give rise to a

Figure 7. (a) Electronic band structure and (b) density of states of CCSO. Positive and negative values in (b) represent spin-up and spin-down
electronic state densities, respectively.
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considerable mixture between the t2g and eg orbitals, leaving
some empty states on the t2g orbital. As a consequence, the
virtual hopping t2g↑-t2g↑ is allowed and dominated, and
therefore, the FM state forms for Ca2CrSbO6. In the current
CCSO, the Cr−O−Sb angle is further decreased to 147.5°
(Figure 8a), and the larger tilting of octahedra decreases the
Cr−O−Sb bond angle and increases the superexchange
between the half-filled t2g electrons of the Cr atom, especially
in the z direction (J3). It is this enhanced virtual hopping t2g↑
-t2g↑ interaction that increases the magnetic interaction
between Cr atoms and further stabilize the FM state in
CCSO. As a result, the TC is enhanced from 13 K in
Ca2CrSbO6 to 16.5 K in CCSO.

CCSO provides a desirable example of intrinsic FM
insulator with a considerable band gap of about 1.55 eV,
which in principle transports only the spin momentum without
charge carrier. The FM order and the insulating state are
usually mutual exclusive because the FM is relevant to the
actual hopping of the electrons, e.g., double exchange43,44 or
RKKY mechanism,45,46 resulting in the delocalization of the
electrons as well as metallic property. In CCSO, however, the
long-range superexchange interactions between Cr3+ with
virtual electron hoping ensure the concurrence of FM and
insulating features with an enhanced Curie temperature
compared to that of the isostructural Ca2CrSbO6. The intrinsic
ferromagnetic and insulating nature makes CCSO a promising
candidate for low-temperature spintronics applications.27−30

4. CONCLUSIONS
In summary, a novel B-site ordered double perovskite oxide
Cd2CrSbO6 was synthesized at 9 GPa and 1375 K. It
crystallizes to P21/n space group with smaller Cd residing at
the A-site and Cr and Sb occupying the B-site in a rock salt
fashion. The charge configuration is confirmed to be Cd2+/

Cr3+/Sb5+. Although the magnetic Cr3+ ions form a tetrahedral
structural frustrated lattice, Cd2CrSbO6 experiences a long-
range ferromagnetic phase transition at 16.5 K. The heavier
Cr/SbO6 tilting leads to the mixture of the Cr t2g and eg
orbitals and thus enables the ferromagnetic superexchange
through the Cr−O−Cd−O−Cr pathway, leading to the
presence of an enhanced Curie temperature compared to
that of Ca2CrSbO6. In addition, Cd2CrSbO6 shows electrical
insulating behavior, with a considerable band gap of 1.55 eV.
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