Supplemental Materials

Superconductivity in HfTe₅ across weak to strong topological insulator transition induced via pressures

Y. Liu^{1#}, Y.J. Long^{1#}, L.X. Zhao¹, S.M. Nie¹, S.J. Zhang¹, Y.X. Weng¹, M.L. Jin¹, W.M. Li¹, Q.Q. Liu¹, Y.W. Long¹, R.C.Yu¹, C.Z. Gu¹, F. Sun¹, W.G.Yang⁴, H.K. Mao⁴, X.L. Feng³, Q Li³, W.T. Zheng³, H.M. Weng^{1.2}, X. Dai^{1,2}, Z. Fang^{1,2}, G.F. Chen^{1,2*}, C.Q. Jin^{1,2*}

1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

- 2. Collaborative Innovation Center of Quantum Matter, Beijing, China
- 3. Department of Materials Science, Jilin University, Changchun 130012

4. Center for High Pressure Science & Technology Advanced Research, Shanghai, 201203, China,

[#]These authors contribute equally to this work.

Correspondence and requests for materials should be addressed to C. Q. Jin (email: Jin@iphy.ac.cn) or G. F. Chen. (email: gfchen@iphy.ac.cn).

Figure S1: Schematic drawing of the crystallography of HfTe₅, where blue balls stand for Hf, red and yellow balls for different type of Te.

GGASOC

Figure S2: The calculated band structure of HfTe₅ without and with SOC indicating a weak topological insulator at ambient, but transforms to a metal with complicated Fermi surface at high pressures at 10GPa and 20GPa, respectively.

Ζ

Figure S3: The evolution of x-ray diffraction of HfTe₅ with pressure: New peaks marked with star appeared at 4.69GPa that indicated a phase transition in well consistent with the theoretical calculations.