Supporting Information:

High-Pressure Stabilized Post-Spinel Phase of CdFe₂O₄ with Distinct

Magnetism from Its Ambient-Pressure Spinel Phase

Beihong Li,^{1,2,7} Xubin Ye,^{2,7} Xiao Wang,² Jie Zhang,^{2,3} Dabiao Lu,^{2,3} Haoting Zhao,^{2,3} Maocai Pi,^{2,3} Zhiwei Hu,⁴ Hong-Ji Lin,⁵ Chien-Te Chen,⁵ Zhao Pan^{2,*}, Xiaomei Qin^{1,*}, and Youwen Long^{2,3,6,*}

¹Department of Physics, Shanghai Normal University, Shanghai 200234, China
²Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
³University of Chinese Academy of Sciences, Beijing 100049, China
⁴Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
⁵Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, China
⁶Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
⁷These authors contributed equally to this work.
Corresponding authors: zhaopan@iphy.ac.cn; xmqin@shnu.edu.cn; ywlong@iphy.ac.cn

1. Supporting Figures

Figure S1. XRD patterns with Rietveld refinement results at room temperature for α -CdFe₂O₄. The observed (black circles), calculated (red line), and difference (blue line) patterns are shown. The allowed Bragg reflection with space group *Fd*-3*m*, are shown by the orange ticks.

Figure S2. (a) Temperature dependence of specific heat $C_p(T)$ of α -CdFe₂O₄ in the wide temperature range from 2 to 300 K under zero field. The solid red line represents the lattice contribution C_{lattice} from Debye-Einstein model. The inset shows the magnetic contribution to specific heat (left), plotted as $C_m/T \sim T$, obtained by subtracting C_{lattice} from the observed total C_p . The magnetic entropy S (right) was evaluated by integrating C_m/T over the observed temperature range. (b) Temperature dependence of ac magnetization χ' at various frequencies for α -CdFe₂O₄. The fitting result yields τ_0 = 1.95×10⁻⁸ s, T_g = 54.5 K, and zv = 4.58. The value of τ_0 in the range of 10⁻⁷-10⁻¹⁰ s and the zv value confirm the spin cluster nature in α -CdFe₂O₄.

2. Supporting Tables

atom	site	x	У	Ζ	Occupancy	$U_{\rm iso}$ (100×Å ²)		
α -CdFe ₂ O ₄ phase ^{<i>a</i>}								
Cd	8 <i>b</i>	0.5	0.5	0.5	1	0.68(2)		
Fe	16 <i>c</i>	0.125	0.125	0.125	1	0.27(4)		
0	32 <i>e</i>	0.2354(6)	0.2354(6)	0.2354(6)	1	0.40(2)		
β -CdFe ₂ O ₄ phase ^b								
Cd	4 <i>c</i>	0.2412(1)	0.25	0.6526(2)	1	0.57(2)		
Fe1	4 <i>c</i>	0.0880(4)	0.25	0.3922(3)	1	0.30(3)		
Fe2	4 <i>c</i>	0.5677(3)	0.25	0.6140(3)	1	0.30(3)		
01	4 <i>c</i>	0.0834(1)	0.25	0.0651(9)	1	0.6 ^c		
02	4 <i>c</i>	0.2889(9)	0.25	0.3382(9)	1	0.6 ^c		
03	4 <i>c</i>	0.3867(1)	0.25	0.0277(1)	1	0.6 ^c		
04	4 <i>c</i>	0.4850(2)	0.25	0.7679(6)	1	0.6 ^c		

Table S1. Crystallographic parameters of α -CdFe₂O₄ and β -CdFe₂O₄ refined from

XRD pattern at Room temperature.

^{*a*} α -CdFe₂O₄'s lattice parameters: a = b = c = 8.7041(8). V =659.43(4) Å³, $R_p = 1.84$, $R_{wp} = 2.67$, χ^2

= 2.704.

 $^{b}\beta$ -CdFe₂O₄'s lattice parameters: a = 9.2331(1), b = 2.9935(2), c = 10.6753(2). V = 295.06(1), $R_{p} = 10.6753(2)$. V = 295.06(1). V = 295.06(1),

1.70, $R_{wp} = 2.63$, $\chi^2 = 5.875$.

^cFixed in the refinement.

α -CdFe ₂ O ₄ phase							
Fe-O (Å)	2.056(2)	BVS (Fe)	2.73	∠Fe-O-Fe (°)	96.82(9)		
Cd-O (Å)	2.102(3)	BVS (Cd)	2.34	Fe-Fe (Å)	3.075(1)		
β -CdFe ₂ O ₄ phase							
Fel-O (Å)	1.943(9)	Fe2-O (Å)	1.811(1)	Cd-O (Å)	2.395(8) × 2		
	2.046(8)		1.917(9)		$2.498(8) \times 2$		
	$2.094(7) \times 2$		$2.062(6) \times 2$		$2.326(6) \times 2$		
	$2.112(1) \times 2$		2.113(6) × 2		2.567(2)		
					2.512(2)		
BVS(Fe1)	3.14	BVS(Fe2)	3.2	BVS (Cd)	1.91		
Fe1-Fe1 (Å)		2.993(2)	Fe2-Fe2 (Å)		2.993(2)		
		3.189 (6)			3.119(5)		
Fe1-Fe2 (Å)		3.514(5)	∠Fe1-O-Fe2 (°)		123.0(7)		
		3.624(4)			134.4(6)		
∠Fe1-O-Fe1 (°)		100.8(4)	∠Fe2-O-Fe2 (°)		101.3(4)		
		90.3(5)			90.2(3)		
		91.3(4)			93.0(1)		

Table S2. Selected bond lengths and angles bond-valence sum (BVS) calculations for α -CdFe₂O₄ and β -CdFe₂O₄. ^{*a*}

*^a*The BVS values (V_i) were calculated using the formula $V_i = \sum_j S_{ij}$, and $S_{ij} = \exp[(r_0 - r_{ij})/0.37]$, where the values of $r_0 = 1.765$ for Fe and 1.904 for Cd was used.

Model A		Model B	
Parameter	Value	Parameter	Value
a	3.0	$ au_0$	1.95×10 ⁻⁸ s
b	4.1	$T_{ m g}$	54.5K
$T_{\rm D}$	274 K	ZV	4.58
$T_{ m E}$	639 K		

Table S3. The fitting results of the Debye-Einstein model^{*A*} and the conventional dynamic slowing down model^{*B*} for α -CdFe₂O₄.^{*a,b*}

^{*a*}The formula for model A is $C_p = a \frac{9R}{x_D^3} \int_0^{x_D} \frac{x^4 e^x}{(e^x - 1)^2} dx + b \ 3R \frac{x_E^2 e^{x_E}}{(e^{x_E} - 1)^2}$, where *R* is the universal gas constant, *a* and *b* are the number of vibrating modes per f.u., $x_D = T_D/T$, $x_E = T_E/T$, and T_D and T_E are Debye and Einstein temperature, respectively.

^{*b*}The formula for model B is $\tau_f/\tau_0 = (T_{ac}/T_g-1)^{-zv}$, where $\tau_f = 1/f$ is the maximum relaxation time related with the measured frequency *f*, τ_0 the spin flipping relaxation time, T_g the extrapolated freezing temperature at f = 0, and zv the dynamic exponent.