## Supplementary materials

## 2.1. Sample synthesis





Fig. S1. The calculated energies of  $Nb_{0.05}Mo_{0.95}O_2$  with  $P2_1/c$  and  $P4_2/mnm$  space groups, respectively.

Fig. S1 indicates the calculated energies of Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub> with two different space groups:  $P2_1/c$  and  $P4_2/mnm$ . We perform the first-principles calculations within the local spin-density approximation as implemented in the Vienna Ab-initio Simulation Package (VASP) [1, 2]. The projector-augmented wave method is used and the cutoff energy is 500 eV [3]. The atomic positions are relaxed using the conjugate gradient algorithm until the residual forces are smaller than 0.02 eV/Å [4]. A  $1 \times 7 \times 7$  Gamma *k*mesh is used for relaxation. We used space group  $P4_2/mnm$  of NbMoO<sub>4</sub> and space group  $P2_1/c$  of MoO<sub>2</sub> as the basic structures to construct superlattices for Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub> and calculated the binding energies. The results show that when Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub> adopts the space group of  $P2_1/c$ , the energy of the system is lower, consistent with the XRD results.



Fig. S2. The XRD patterns of Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub>, Nb<sub>0.1</sub>Mo<sub>0.9</sub>O<sub>2</sub>, and Nb<sub>0.2</sub>Mo<sub>0.8</sub>O<sub>2</sub> with the specific peaks of the  $P2_1/c$  highlighted in red rectangular boxes.

Fig. S2 displays the XRD patterns of Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub> (Fig. S2 (a)), Nb<sub>0.1</sub>Mo<sub>0.9</sub>O<sub>2</sub> (Fig. S2 (b)), and Nb<sub>0.2</sub>Mo<sub>0.8</sub>O<sub>2</sub> (Fig. S2 (c)). The red rectangular boxes indicate the specific peaks of the  $P2_1/c$  structure, corresponding to the (100) peak for Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub> and Nb<sub>0.1</sub>Mo<sub>0.9</sub>O<sub>2</sub> and the (302) peak for Nb<sub>0.2</sub>Mo<sub>0.8</sub>O<sub>2</sub>. However, for Nb<sub>0.2</sub>Mo<sub>0.8</sub>O<sub>2</sub>, the (100) peak disappears and the intensity of the (302) peak significantly weakens.



Fig. S3. The XRD patterns of MoO<sub>2</sub> (*P*4<sub>2</sub>/*mnm*) and Nb<sub>x</sub>Mo<sub>1-x</sub>O<sub>2</sub> (x=0.25, 0.3, 0.33, 0.6,

0.65).

Fig. S3 presents the simulated XRD pattern of MoO<sub>2</sub> ( $P4_2/mnm$ ) (Fig. S3 (a)) and the XRD patterns of Nb<sub>x</sub>Mo<sub>1-x</sub>O<sub>2</sub> (x=0.25, 0.3, 0.33, 0.6, 0.65) (Fig. S3 (b), (c), (d), (e), and (f)). Comparing the XRD patterns of Nb<sub>x</sub>Mo<sub>1-x</sub>O<sub>2</sub> (x=0.25, 0.3, 0.33, 0.6, 0.65) with the simulated XRD pattern of MoO<sub>2</sub> ( $P4_2/mnm$ ), no significant differences are observed. However, for x=0.25 and 0.3 compositions, the compounds exhibit  $I4_1/a$  structure, while for x=0.33, 0.6, and 0.65 compositions, the compounds adopt the  $P4_2/mnm$  structure, as confirmed by SAED analyses. Notably, the synthesized compounds with x=0.6 and 0.65 compositions exhibit Nb<sub>2</sub>O<sub>5</sub> impurity phase, marked by the red arrows in Fig. S3.



**Fig. S4.** The SAED patterns of Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub> along the [111] direction and Nb<sub>0.6</sub>Mo<sub>0.4</sub>O<sub>2</sub> along the [100] direction.

Fig. S4 (a) displays the SAED pattern of Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub> along the [111] direction, which can be indexed to the  $P2_1/c$  structure. Fig. S4 (b) shows the SAED pattern of Nb<sub>0.6</sub>Mo<sub>0.4</sub>O<sub>2</sub> along the [100] direction, where no superlattice spots are observed unlike in Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub>. By examining the presence or absence of superlattice spots along the specific zone axes ([100], [111], [113]), we can differentiate the structures between  $I4_1/a$  and  $P4_2/mnm$ .



Fig. S5. The XRD refinement results of Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub>, Nb<sub>0.1</sub>Mo<sub>0.9</sub>O<sub>2</sub>, Nb<sub>0.2</sub>Mo<sub>0.8</sub>O<sub>2</sub>, and Nb<sub>0.33</sub>Mo<sub>0.67</sub>O<sub>2</sub>.

Fig. S5 (a), (b), (c), and (d) display the refinement results of Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub>, Nb<sub>0.1</sub>Mo<sub>0.9</sub>O<sub>2</sub>, Nb<sub>0.2</sub>Mo<sub>0.8</sub>O<sub>2</sub>, and Nb<sub>0.33</sub>Mo<sub>0.67</sub>O<sub>2</sub>, respectively. The refinement results of Nb<sub>0.05</sub>Mo<sub>0.95</sub>O<sub>2</sub>, Nb<sub>0.1</sub>Mo<sub>0.9</sub>O<sub>2</sub>, and Nb<sub>0.2</sub>Mo<sub>0.8</sub>O<sub>2</sub> reveal that all the three compounds exhibit the  $P2_{1/c}$  structure. The refined structural parameters for these compounds are presented in Table S1. However, for Nb<sub>0.2</sub>Mo<sub>0.8</sub>O<sub>2</sub>, the refined atomic positions deviate a lot from the MoO<sub>2</sub> ( $P2_{1/c}$ ) structure, indicating that this composition may possess a critical structure between  $P2_{1/c}$  and  $I4_{1/a}$ . The refinement results for Nb<sub>0.33</sub>Mo<sub>0.67</sub>O<sub>2</sub> demonstrate the  $P4_2/mnm$  structure, and the refined structural parameters are presented in Table S2.

| Parameters                | Nb0.05M00.95O2 | Nb <sub>0.1</sub> Mo <sub>0.9</sub> O <sub>2</sub> | Nb <sub>0.2</sub> Mo <sub>0.8</sub> O <sub>2</sub> |
|---------------------------|----------------|----------------------------------------------------|----------------------------------------------------|
| Lattice system            | Monoclinic     | Monoclinic                                         | Monoclinic                                         |
| space group               | $P2_{1}/c$     | $P2_{1}/c$                                         | $P2_{1}/c$                                         |
| <i>a</i> (Å)              | 5.617 (1)      | 5.632 (1)                                          | 5.705 (1)                                          |
| <b>b</b> (Å)              | 4.851 (1)      | 4.846 (1)                                          | 4.851 (1)                                          |
| c (Å)                     | 5.624 (1)      | 5.617 (1)                                          | 5.635 (1)                                          |
| β (°)                     | 120.93 (1)     | 120.94 (1)                                         | 120.50 (1)                                         |
| Atomic position           | (x, y, z)      | (x, y, z)                                          | (x, y, z)                                          |
| Mo (Nb)                   | 0.234 (1),     | 0.236 (1),                                         | 0.247 (2),                                         |
|                           | 0.006 (1),     | 0.011 (1),                                         | -0.001 (1),                                        |
|                           | 0.017 (1)      | 0.014 (1)                                          | 0.001 (1)                                          |
| 01                        | 0.102 (6),     | 0.087 (2),                                         | 0.103 (2),                                         |
|                           | 0.180 (4),     | 0.231 (2),                                         | 0.198 (3),                                         |
|                           | 0.206 (3)      | 0.234 (2)                                          | 0.171 (4)                                          |
| 02                        | 0.390 (1),     | 0.458 (2),                                         | 0.353 (3),                                         |
|                           | 0.640 (3),     | 0.596 (3),                                         | 0.787 (2),                                         |
|                           | 0.218 (4)      | 0.335 (1)                                          | 0.316 (2)                                          |
| $R_{wp}(\%)$              | 10.5           | 9.65                                               | 13.3                                               |
| <i>R</i> <sub>p</sub> (%) | 6.79           | 6.30                                               | 8.07                                               |

Table S1 Refinement structural parameters of Nb<sub>x</sub>Mo<sub>1-x</sub>O<sub>2</sub> (x=0.05, 0.1, 0.2)

| Parameters                 | Nb <sub>0.33</sub> Mo <sub>0.67</sub> O <sub>2</sub> |  |
|----------------------------|------------------------------------------------------|--|
| Lattice system             | Tetragonal                                           |  |
| space group                | P4 <sub>2</sub> /mnm                                 |  |
| <i>a</i> (Å)               | 4.851 (1)                                            |  |
| <i>b</i> (Å)               | 4.851 (1)                                            |  |
| <i>c</i> (Å)               | 2.880 (1)                                            |  |
| Atomic position            | (x, y, z)                                            |  |
| Nb (Mo)                    | 0, 0, 0                                              |  |
| 0                          | 0.293 (1), 0.293 (1), 0                              |  |
| <b>R</b> <sub>wp</sub> (%) | 5.40                                                 |  |
| $R_{\rm p}$ (%)            | 3.78                                                 |  |

Table S2 Refinement structural parameters of  $Nb_{0.33}Mo_{0.67}O_2$ 



**Fig. S6.** (a) The SAED pattern of Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> along the [001] zone axis. (b), (c), (d), and (e) The SAED patterns with crystal rotations. (f) The SAED pattern along the [010] direction. (g) Constructed  $a^*c^*$  crystal plane based on the above experimental SAED patterns.



**Fig. S7.** (a) The SAED pattern of Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> along the [001] zone axis. (b), (c), (d), and (e) The SAED patterns with crystal rotations. (f) The SAED pattern along the [100] direction. (g) Constructed  $b^*c^*$  crystal plane based on the above experimental SAED patterns.

In Figs. S6 and S7, we obtain the SAED patterns along the [001] direction. We fix the plane (010)/(100) and rotate the TEM specimen. We gain SAED patterns along the different zone axes (Fig. S6/S7 (b), (c), (d), and (e)). We measure the distance between the diffraction and transmission spots and draw the schematic plane  $a^*c^*$  ( $b^*c^*$ ) in Fig. S6/S7 (g). Besides, we conclude the periodicity and expand the spots. The reciprocal  $a^*c^*$  ( $b^*c^*$ ) plane and the reciprocal lattice are gained.



**Fig. S8.** (a) The schematic reciprocal lattice of Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub>. (b), (c), (d), (e), (f), and (g) The experimental SAED patterns of Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> along the [100], [001], [111], [113], and [012] zone axes, respectively. The SAED patterns are indexed by using new lattice parameters.

According to the reciprocal lattice, the new lattice constants of Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> are determined as a=b=9.699 Å and c=5.686 Å (tetragonal). As shown in Fig. S8, we conclude the reflection conditions and determine space group  $I4_1/a$ .



**Fig. S9.** The temperature-variable XRD patterns of Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> at 28 °C, 200 °C and 400 °C, respectively.

The temperature variable XRD patterns of Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> at 28 °C (black line), 200 °C (red line) and 400 °C (blue line), respectively are displayed in Fig. S9. We index the XRD patterns with lattice parameters a=b=9.71 Å, c=5.68 Å. The XRD pattern from 20° to 150° shows no structural transition. Therefore, Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> keeps bodycentered tetragonal (*I*4<sub>1</sub>/*a*) structure from room temperature to 400 °C.



Fig. S10. The DSC results of Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> in the temperature range of room temperature-600

We performed thermal analysis on Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub> using a Differential Scanning Calorimeter (model DSC131 Evo). The Differential Scanning Calorimetry results demonstrate that no phase transformation characteristics is observed for Nb<sub>0.25</sub>Mo<sub>0.75</sub>O<sub>2</sub>, indicating the stability of the structure in the temperature range of room temperature-600 °C, consistent with the temperature-variable XRD results.

## References

[1] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study, Phys. Rev. B. 57 (1998) 1505.

[2] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169.

[3] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758.

[4] W. Press, Numerical recipes 3rd edition: The art of scientific computing, Cambridge University Press, NY, USA 2007.